1
|
Skrzypczak N, Buczkowski A, Bohusz W, Nowak E, Tokarska K, Leśniewska A, Alzebari AM, Ruszkowski P, Gdaniec M, Bartl F, Przybylski P. Modifications of geldanamycin via CuAAC altering affinity to chaperone protein Hsp90 and cytotoxicity. Eur J Med Chem 2023; 256:115450. [PMID: 37210951 DOI: 10.1016/j.ejmech.2023.115450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023]
Abstract
Functionalization of alkyne (1) and azide (2) derivatives of geldanamycin (GDM) via dipolar cycloaddition CuAAC yielded 35 new congeners (3-37) with C(17)-triazole arms bearing caps of different nature (basic vs. acidic, hydrophilic vs. hydrophobic). Confrontation of biological data (anticancer activity vs. toxicity in normal cells) with lipophilicity (clogP), dissociation constants (Kd) of complexes with Hsp90 and binding modes to Hsp90 revealed SAR in specific subgroups of GDM derivatives. The most potent GDM congeners 14-16, bearing C(17)-triazole-benzyl-halogen arms exhibited the most optimal clogP values of 2.7-3.1 at favourable binding to Hsp90 (KdHsp90 at μM level). The anticancer activity of 14-16 (IC50 = 0.23-0.41 μM) is higher than those of GDM (IC50 = 0.58-0.64 μM) and actinomycin D (ActD, IC50 = 0.62-0.71 μM) in SKBR-3, SKOV-3 and PC-3 cell lines, with a comparable cytotoxicity in healthy cells. The relationship between structure and attractive anticancer potency (IC50 = 0.53-0.74 μM) is also observed for congeners with C(17)-triazole-saccharide or C(17)-triazole-unsaturated arms. In the former, the absolute configuration at C(4) (ᴅ-glucose vs. ᴅ-galactose) whereas in the latter the length of the unsaturated arm influences the cytotoxic effects due to different binding strength (Kd, ΔE) and modes with Hsp90. Among all triazole congeners of GDM that are biologically attractive and exhibit lower toxicity in normal cells than GDM and ActD, the derivative 22, bearing the C(17)-triazole-cinnamyl arm, shows the lowest Kd (Hsp90), optimal clogP = 2.82, the best pro-apoptotic properties in SKBR-3 and SKOV-3 and the best selectivity indices (SI). For the most potent GDM derivatives with C(17)-triazole arm, the docking studies have suggested the importance of the intermolecular stabilization between the arm and the D57 or Y61 of Hsp90.
Collapse
Affiliation(s)
- Natalia Skrzypczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Adam Buczkowski
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, Lodz, 90-236, Poland
| | - Wiktor Bohusz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Ewelina Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Klaudia Tokarska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Aleksandra Leśniewska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Attaa Mohammed Alzebari
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Piotr Ruszkowski
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 5a, 60-806, Poznań, Poland
| | - Maria Gdaniec
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Franz Bartl
- Lebenswissenschaftliche Fakultӓt, Institut fȕr Biologie, Biophysikalische Chemie Humboldt-Universitӓt zu Berlin, Invalidenstraße 42, Berlin, Germany
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| |
Collapse
|
2
|
Bergueiro J, Glitscher EA, Calderón M. A hybrid thermoresponsive plasmonic nanogel designed for NIR-mediated chemotherapy. BIOMATERIALS ADVANCES 2022; 137:212842. [PMID: 35929271 DOI: 10.1016/j.bioadv.2022.212842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/11/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Temperature-trigger chemotherapy is one of the state-of-the-art anti-tumoral strategies in nanomedicine. However, this strategy is in close relationship with the effect of the temperature in the tumor tissue. With high temperatures, the ablation of the tumor tissue can hinder a correct chemotherapy approximation. On the other hand, with moderate temperatures a negative vascularization that promotes the tumor growing is produced and competes with the chemotherapeutic effects. We have constructed one nanogel system composed of a thermoresponsive polymer cross-linked by plasmonic gold nanoparticles (AuNPs) for temperature-trigger chemotherapy. Doxorubicin loaded in the porous interior of the nanogel is released when the thermoresponsive network of the nanogel collapses due to the heat generated by the AuNPs upon near infra-red light irradiation. The hybrid nanogel system has been tested in vitro and in vivo, where it was observed that the temperatures reached in the in vivo NIR irradiation have an undesired effect on the inhibition of the tumor growth while the drug loaded systems considerably reduced the tumor sizes. This study shows the importance of design in temperature triggered antitumoral systems, where lower temperatures usually reached in practical situations due to light attenuation produced by the tissue can be positively utilized for enhancing the antitumoral effect of loaded drugs in the system.
Collapse
Affiliation(s)
- Julian Bergueiro
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany; Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Emanuel A Glitscher
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Marcelo Calderón
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
3
|
Skrzypczak N, Przybylski P. Structural diversity and biological relevance of benzenoid and atypical ansamycins and their congeners. Nat Prod Rep 2022; 39:1678-1704. [PMID: 35262153 DOI: 10.1039/d2np00004k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 2011 to 2021The structural division of ansamycins, including those of atypical cores and different lengths of the ansa chains, is presented. Recently discovered benzenoid and atypical ansamycin scaffolds are presented in relation to their natural source and biosynthetic routes realized in bacteria as well as their muta and semisynthetic modifications influencing biological properties. To better understand the structure-activity relationships among benzenoid ansamycins structural aspects together with mechanisms of action regarding different targets in cells, are discussed. The most promising directions for structural optimizations of benzenoid ansamycins, characterized by predominant anticancer properties, were discussed in view of their potential medical and pharmaceutical applications. The bibliography of the review covers mainly years from 2011 to 2021.
Collapse
Affiliation(s)
- Natalia Skrzypczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
| |
Collapse
|
4
|
Skrzypczak N, Pyta K, Ruszkowski P, Mikołajczak P, Kucińska M, Murias M, Gdaniec M, Bartl F, Przybylski P. Anticancer activity and toxicity of new quaternary ammonium geldanamycin derivative salts and their mixtures with potentiators. J Enzyme Inhib Med Chem 2021; 36:1898-1904. [PMID: 34344239 PMCID: PMC8344233 DOI: 10.1080/14756366.2021.1960829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Geldanamycin (GDM) has been modified by different type neutral/acidic/basic substituents (1–7) and by quinuclidine motif (8), transformed into ammonium salts (9–13) at C(17). These compounds have been characterised by spectroscopic and x-ray methods. Derivative 8 shows better potency than GDM in MCF-7, MDA-MB-231, A549 and HeLa (IC50s = 0.09–1.06 µM). Transformation of 8 into salts 9–13 reduces toxicity (by 11-fold) at attractive potency, e.g. MCF-7 cell line (IC50∼2 µM). Our studies show that higher water solubility contributes to lower toxicity of salts than GDM in healthy CCD39Lu and HDF cells. The use of 13 mixtures with potentiators PEI and DOX enhanced anticancer effects from IC50∼2 µM to IC50∼0.5 µM in SKBR-3, SKOV-3, and PC-3 cancer cells, relative to 13. Docking studies showed that complexes between quinuclidine-bearing 8–13 and Hsp90 are stabilised by extra hydrophobic interactions between the C(17)-arms and K58 or Y61 of Hsp90.
Collapse
Affiliation(s)
| | - Krystian Pyta
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Piotr Ruszkowski
- Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Małgorzata Kucińska
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - Maria Gdaniec
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Franz Bartl
- Lebenswissenschaftliche Fakultät, Institutfür Biologie, Biophysikalische Chemie Humboldt-Universität zu Berlin Invalidenstrasse 42, Berlin, Germany
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
5
|
Wesemann F, Heutling A, Wienecke P, Kirschning A. First Ring-Expanded Maytansin Lactone Accessed by a New Mutasynthetic Variant. Chembiochem 2020; 21:2927-2930. [PMID: 32484951 PMCID: PMC7689855 DOI: 10.1002/cbic.202000336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 12/15/2022]
Abstract
A multiblocked mutant strain (ΔAHBA and Δasm12, asm21) of Actinosynnema pretiosum, the producer of the highly toxic maytansinoid ansamitocin, has been used for the mutasynthetic production of new proansamitocin derivatives. The use of mutant strains that are blocked in the biosynthesis of an early building block as well as in the expression of two tailoring enzymes broadens the scope of chemo-biosynthetic access to new maytansinoids. Remarkably, a ring-expanded macrolactone derived from ansamitocin was created for the first time.
Collapse
Affiliation(s)
- Friederike Wesemann
- Institute of Organic Chemistry and, Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Anja Heutling
- Institute of Organic Chemistry and, Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Paul Wienecke
- Institute of Organic Chemistry and, Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry and, Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| |
Collapse
|
6
|
Padilla-Salinas R, Sun L, Anderson R, Yang X, Zhang S, Chen ZJ, Yin H. Discovery of Small-Molecule Cyclic GMP-AMP Synthase Inhibitors. J Org Chem 2020; 85:1579-1600. [PMID: 31829590 DOI: 10.1021/acs.joc.9b02666] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) (cGAS), a cytosolic DNA sensor, plays an important role in the type I interferon response. DNA from either invading microbes or self-origin triggers the enzymatic activity of cGAS. Aberrant activation of cGAS is associated with various autoimmune disorders. Only one selective probe exists for inhibiting cGAS in cells, while others are limited by their poor cellular activity or specificity, which underscores the urgency for discovering new cGAS inhibitors. Here, we describe the development of new small-molecule human cGAS (hcGAS) inhibitors (80 compounds synthesized) with high binding affinity in vitro and cellular activity. Our studies show CU-32 and CU-76 selectively inhibit the DNA pathway in human cells but have no effect on the RIG-I-MAVS or Toll-like receptor pathways. CU-32 and CU-76 represent a new class of hcGAS inhibitors with activity in cells and provide a new chemical scaffold for designing probes to study cGAS function and development of autoimmune therapeutics.
Collapse
Affiliation(s)
- Rosaura Padilla-Salinas
- Department of Biochemistry and BioFrontiers Institute , University of Colorado Boulder , Boulder 80309 , Colorado , United States
| | - Lijun Sun
- Department of Molecular Biology , Howard Hughes Medical Institute , Department of Immunology , and Animal Resource Center , University of Texas Southwestern Medical Center , Dallas 75390-9148 , Texas , United States
| | - Rachel Anderson
- Department of Biochemistry and BioFrontiers Institute , University of Colorado Boulder , Boulder 80309 , Colorado , United States
| | - Xikang Yang
- School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center of Life Science , Tsinghua University , Beijing 100082 , China
| | - Shuting Zhang
- School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center of Life Science , Tsinghua University , Beijing 100082 , China
| | - Zhijian J Chen
- Department of Molecular Biology , Howard Hughes Medical Institute , Department of Immunology , and Animal Resource Center , University of Texas Southwestern Medical Center , Dallas 75390-9148 , Texas , United States
| | - Hang Yin
- Department of Biochemistry and BioFrontiers Institute , University of Colorado Boulder , Boulder 80309 , Colorado , United States.,School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center of Life Science , Tsinghua University , Beijing 100082 , China
| |
Collapse
|
7
|
Klahn P, Fetz V, Ritter A, Collisi W, Hinkelmann B, Arnold T, Tegge W, Rox K, Hüttel S, Mohr KI, Wink J, Stadler M, Wissing J, Jänsch L, Brönstrup M. The nuclear export inhibitor aminoratjadone is a potent effector in extracellular-targeted drug conjugates. Chem Sci 2019; 10:5197-5210. [PMID: 31191875 PMCID: PMC6540907 DOI: 10.1039/c8sc05542d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/15/2019] [Indexed: 12/04/2022] Open
Abstract
The concept of targeted drug conjugates has been successfully translated to clinical practice in oncology. Whereas the majority of cytotoxic effectors in drug conjugates are directed against either DNA or tubulin, our study aimed to validate nuclear export inhibition as a novel effector principle in drug conjugates. For this purpose, a semisynthetic route starting from the natural product ratjadone A, a potent nuclear export inhibitor, has been developed. The biological evaluation of ratjadones functionalized at the 16-position revealed that oxo- and amino-analogues had very high potencies against cancer cell lines (e.g. 16R-aminoratjadone 16 with IC50 = 260 pM against MCF-7 cells, or 19-oxoratjadone 14 with IC50 = 100 pM against A-549 cells). Mechanistically, the conjugates retained a nuclear export inhibitory activity through binding CRM1. To demonstrate a proof-of-principle for cellular targeting, folate- and luteinizing hormone releasing hormone (LHRH)-based carrier molecules were synthesized and coupled to aminoratjadones as well as fluorescein for cellular efficacy and imaging studies, respectively. The Trojan-Horse conjugates selectively addressed receptor-positive cell lines and were highly potent inhibitors of their proliferation. For example, the folate conjugate FA-7-Val-Cit-pABA-16R-aminoratjadone had an IC50 of 34.3 nM, and the LHRH conjugate d-Orn-Gose-Val-Cit-pABA-16R-aminoratjadone had an IC50 of 12.8 nM. The results demonstrate that nuclear export inhibition is a promising mode-of-action for extracellular-targeted drug conjugate payloads.
Collapse
Affiliation(s)
- Philipp Klahn
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
- Institute of Organic Chemistry , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany .
| | - Verena Fetz
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
| | - Antje Ritter
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
| | - Wera Collisi
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
- Department of Microbial Drugs , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Bettina Hinkelmann
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
| | - Tatjana Arnold
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
| | - Werner Tegge
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
| | - Katharina Rox
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
- German Centre of Infection Research (DZIF) , Partner Site Hannover-Braunschweig , Germany
| | - Stephan Hüttel
- Department of Microbial Drugs , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Kathrin I Mohr
- Department of Microbial Drugs , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Joachim Wink
- Department of Microbial Drugs , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Marc Stadler
- Department of Microbial Drugs , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Josef Wissing
- Department of Structure and Function of Proteins , Research Group Cellular Proteomic , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Lothar Jänsch
- Department of Structure and Function of Proteins , Research Group Cellular Proteomic , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Mark Brönstrup
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
- Biomolecular Drug Research Center (BMWZ) , Schneiderberg 38 , 30167 Hannover , Germany
- German Centre of Infection Research (DZIF) , Partner Site Hannover-Braunschweig , Germany
| |
Collapse
|
8
|
Complex molecules, clever solutions – Enzymatic approaches towards natural product and active agent syntheses. Bioorg Med Chem 2018; 26:1285-1303. [DOI: 10.1016/j.bmc.2017.06.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/29/2017] [Accepted: 06/27/2017] [Indexed: 12/31/2022]
|
9
|
Dehimat ZI, Yaşar S, Tebbani D, Özdemir İ. Sonogashira cross-coupling reaction catalyzed by N-heterocyclic carbene-Pd(II)-PPh3 complexes under copper free and aerobic conditions. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.09.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Devkule S, Chavan S. Copper(I) complexes of N-(2-quinolynylmethylene)-1H-benzimidazole and triphenylphosphine: Synthesis, characterization, luminescence and catalytic properties. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.05.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Proteomic studies on anti-tumor agent ansamitocin P-3 producer Actinosynnema pretiosum in response to ammonium and isobutanol. Bioprocess Biosyst Eng 2017; 40:1133-1139. [PMID: 28382459 DOI: 10.1007/s00449-017-1763-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
Abstract
Our previous work showed that the biosynthesis of ansamitocin P-3 (AP-3), an anti-tumor agent, by Actinosynnema pretiosum was depressed by ammonium but enhanced by isobutanol in the medium. Here we show proteomics analyses on A. pretiosum in different fermentation conditions with and without ammonium or isobutanol using two-dimensional electrophoresis (2-DE), matrix-assisted laser desorption/ionization, and linear ion trap quadrupole mass spectrometry. Pairwise comparison of repetitive 2-DE maps was performed to find differentially expressed spots, and eight proteins were identified as functionally annotated ones. Among these proteins, D-3-phosphoglycerate dehydrogenase (PGDH) and glyceraldehyde 3-phosphate dehydrogenase showed statistically significant up-regulation in ammonium vs. basic or isobutanol medium, while fatty acid synthetase, histidine-tRNA ligase, transposase, molecular chaperone GroEL, SAM-dependent methyltransferase, and Crp/Fnr family transcriptional regulator were overexpressed in ammonium vs. basic medium. Based on the 2-DE data, exogenous L-serine which could inhibit the PGDH activity was added to the cultures with isobutanol, and a lower AP-3 production was confirmed under 2.5 mM serine addition (24 or 48 h).
Collapse
|
12
|
Dewan A, Sarmah M, Bora U, Thakur AJ. A green protocol for ligand, copper and base free Sonogashira cross-coupling reaction. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.07.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Pošta M, Soós V, Beier P. Design of photoaffinity labeling probes derived from 3,4,5-trimethylfuran-2(5 H )-one for mode of action elucidation. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.03.096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Rational biosynthetic approaches for the production of new-to-nature compounds in fungi. Fungal Genet Biol 2016; 89:89-101. [PMID: 26872866 DOI: 10.1016/j.fgb.2016.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 01/06/2023]
Abstract
Filamentous fungi have the ability to produce a wide range of secondary metabolites some of which are potent toxins whereas others are exploited as food additives or drugs. Fungal natural products still play an important role in the discovery of new chemical entities for potential use as pharmaceuticals. However, in most cases they cannot be directly used as drugs due to toxic side effects or suboptimal pharmacokinetics. To improve drug-like properties, including bioactivity and stability or to produce better precursors for semi-synthetic routes, one needs to generate non-natural derivatives from known fungal secondary metabolites. In this minireview, we describe past and recent biosynthetic approaches for the diversification of fungal natural products, covering examples from precursor-directed biosynthesis, mutasynthesis, metabolic engineering and biocombinatorial synthesis. To illustrate the current state-of-the-art, challenges and pitfalls, we lay particular emphasis on the class of fungal cyclodepsipeptides which have been studied longtime for product diversification and which are of pharmaceutical relevance as drugs.
Collapse
|
15
|
Lehmann J, Wright MH, Sieber SA. Making a Long Journey Short: Alkyne Functionalization of Natural Product Scaffolds. Chemistry 2016; 22:4666-78. [PMID: 26752308 DOI: 10.1002/chem.201504419] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 01/09/2023]
Abstract
Biological selection makes natural products promising scaffolds for drug development and the ever growing number of newly identified, structurally diverse molecules helps to fill the gaps in chemical space. Elucidating the function of a small molecule, such as identifying its protein binding partners, its on- and off-targets, is becoming increasingly important. Activity- and affinity-based protein profiling are modern strategies to acquire such molecular-level information. Introduction of a molecular handle (azide, alkyne, biotin) can shed light on the mode of action of small molecules. This Concept article covers central points on synthetic methodology for integrating a terminal alkyne into a molecule of interest.
Collapse
Affiliation(s)
- Johannes Lehmann
- Center for Integrated Protein Science, Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Megan H Wright
- Center for Integrated Protein Science, Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Stephan A Sieber
- Center for Integrated Protein Science, Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany.
| |
Collapse
|
16
|
Bułyszko I, Dräger G, Klenge A, Kirschning A. Evaluation of the Synthetic Potential of an AHBA Knockout Mutant of the Rifamycin Producer Amycolatopsis mediterranei. Chemistry 2015; 21:19231-42. [PMID: 26559164 DOI: 10.1002/chem.201503548] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Indexed: 12/17/2022]
Abstract
Supplementing an AHBA(-) mutant strain of Amycolatopsis mediterranei, the rifamycin producer, with a series of benzoic acid derivatives yielded new tetraketides containing different phenyl groups. These mutasynthetic studies revealed unique reductive properties of A. mediterranei towards nitro- and azidoarenes, leading to the corresponding anilines. In selected cases, the yields of mutaproducts (fermentation products isolated after feeding bacteria with chemically prepared analogs of natural building blocks) obtained are in a range (up to 118 mg L(-1)) that renders them useful as chiral building blocks for further synthetic endeavors. The configuration of the stereogenic centers at C6 and C7 was determined to be 6R,7S for one representative tetraketide. Importantly, processing beyond the tetraketide stage is not always blocked when the formation of the bicyclic naphthalene precursor cannot occur. This was proven by formation of a bromo undecaketide, an observation that has implications regarding the evolutionary development of rifamycin biosynthesis.
Collapse
Affiliation(s)
- Ilona Bułyszko
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover (Germany)
| | - Gerald Dräger
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover (Germany)
| | - Anja Klenge
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover (Germany)
| | - Andreas Kirschning
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover (Germany).
| |
Collapse
|
17
|
Song YN, Jiao RH, Zhang WJ, Zhao GY, Dou H, Jiang R, Zhang AH, Hou YY, Bi SF, Ge HM, Tan RX. New ansamycin derivatives generated by simultaneous mutasynthesis. Org Lett 2015; 17:556-9. [PMID: 25611625 DOI: 10.1021/ol5035639] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The conversion from triene- to diene-typed ansamycins is clarified step by step in Streptomyces seoulensis IFB-A01. Such an intertype convertibility is adopted to establish for the first time the simultaneous mutasynthesis of both types of C17-benzene ansamycins (C17BAs). Three of the newly generated unnatural compounds showed potent cytotoxicity.
Collapse
Affiliation(s)
- Ya Nan Song
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University , Nanjing, 210093, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mancuso L, Knobloch T, Buchholz J, Hartwig J, Möller L, Seidel K, Collisi W, Sasse F, Kirschning A. Preparation of Thermocleavable Conjugates Based on Ansamitocin and Superparamagnetic Nanostructured Particles by a Chemobiosynthetic Approach. Chemistry 2014; 20:17541-51. [DOI: 10.1002/chem.201404502] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Indexed: 11/08/2022]
|
19
|
Affiliation(s)
- Gerrit Jürjens
- Institute of Organic Chemistry
and Center of Biomolecuclar Drug Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry
and Center of Biomolecuclar Drug Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| |
Collapse
|