1
|
Schnepel C, Dodero VI, Sewald N. Novel Arylindigoids by Late-Stage Derivatization of Biocatalytically Synthesized Dibromoindigo. Chemistry 2021; 27:5404-5411. [PMID: 33496351 PMCID: PMC8048522 DOI: 10.1002/chem.202005191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 11/18/2022]
Abstract
Indigoids represent natural product-based compounds applicable as organic semiconductors and photoresponsive materials. Yet modified indigo derivatives are difficult to access by chemical synthesis. A biocatalytic approach applying several consecutive selective C-H functionalizations was developed that selectively provides access to various indigoids: Enzymatic halogenation of l-tryptophan followed by indole generation with tryptophanase yields 5-, 6- and 7-bromoindoles. Subsequent hydroxylation using a flavin monooxygenase furnishes dibromoindigo that is derivatized by acylation. This four-step one-pot cascade gives dibromoindigo in good isolated yields. Moreover, the halogen substituent allows for late-stage diversification by cross-coupling directly performed in the crude mixture, thus enabling synthesis of a small set of 6,6'-diarylindigo derivatives. This chemoenzymatic approach provides a modular platform towards novel indigoids with attractive spectral properties.
Collapse
Affiliation(s)
- Christian Schnepel
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
- Present address: School of ChemistryManchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Veronica I. Dodero
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Norbert Sewald
- Organische und Bioorganische ChemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
2
|
Chen CC, Min J, Zhang L, Yang Y, Yu X, Guo RT. Advanced Understanding of the Electron Transfer Pathway of Cytochrome P450s. Chembiochem 2020; 22:1317-1328. [PMID: 33232569 DOI: 10.1002/cbic.202000705] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Indexed: 11/08/2022]
Abstract
Cytochrome P450s are heme-thiolate enzymes that participate in carbon source assimilation, natural compound biosynthesis and xenobiotic metabolism in all kingdoms of life. P450s can catalyze various reactions by using a wide range of organic compounds, thus exhibiting great potential in biotechnological applications. The catalytic reactions of P450s are driven by electron equivalents that are sourced from pyridine nucleotides and delivered by cognate or matching redox partners (RPs). The electron transfer (ET) route from RPs to P450s involves one or more redox center-containing domains. As the rate of ET is one of the main determinants of P450 efficacy, an in-depth understanding of the P450 ET pathway should increase our knowledge of these important enzymes and benefit their further applications. Here, the various P450 RP systems along with current understanding of their ET routes will be reviewed. Notably, state-of-the-art structural studies of the two main types of self-sufficient P450 will also be summarized.
Collapse
Affiliation(s)
- Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, P. R. China
| |
Collapse
|
3
|
Exploring the Biocatalytic Potential of Fe/α‐Ketoglutarate‐Dependent Halogenases. Chemistry 2020; 26:7336-7345. [DOI: 10.1002/chem.201905752] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/18/2022]
|
4
|
Visser SP. Second‐Coordination Sphere Effects on Selectivity and Specificity of Heme and Nonheme Iron Enzymes. Chemistry 2020; 26:5308-5327. [DOI: 10.1002/chem.201905119] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/04/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sam P. Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical ScienceThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
5
|
Doyon TJ, Perkins JC, Baker Dockrey SA, Romero EO, Skinner KC, Zimmerman PM, Narayan ARH. Chemoenzymatic o-Quinone Methide Formation. J Am Chem Soc 2019; 141:20269-20277. [PMID: 31840992 DOI: 10.1021/jacs.9b10474] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Generation of reactive intermediates and interception of these fleeting species under physiological conditions is a common strategy employed by Nature to build molecular complexity. However, selective formation of these species under mild conditions using classical synthetic techniques is an outstanding challenge. Here, we demonstrate the utility of biocatalysis in generating o-quinone methide intermediates with precise chemoselectivity under mild, aqueous conditions. Specifically, α-ketoglutarate-dependent non-heme iron enzymes, CitB and ClaD, are employed to selectively modify benzylic C-H bonds of o-cresol substrates. In this transformation, biocatalytic hydroxylation of a benzylic C-H bond affords a benzylic alcohol product which, under the aqueous reaction conditions, is in equilibrium with the corresponding o-quinone methide. o-Quinone methide interception by a nucleophile or a dienophile allows for one-pot conversion of benzylic C-H bonds into C-C, C-N, C-O, and C-S bonds in chemoenzymatic cascades on preparative scale. The chemoselectivity and mild nature of this platform is showcased here by the selective modification of peptides and chemoenzymatic synthesis of the chroman natural product (-)-xyloketal D.
Collapse
|
6
|
Rousseau O, Ebert MCCJC, Quaglia D, Fendri A, Parisien AH, Besna JN, Iyathurai S, Pelletier JN. Indigo Formation and Rapid NADPH Consumption Provide Robust Prediction of Raspberry Ketone Synthesis by Engineered Cytochrome P450 BM3. ChemCatChem 2019. [DOI: 10.1002/cctc.201901974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olivier Rousseau
- Department of ChemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
| | - Maximilian C. C. J. C. Ebert
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
- Department of BiochemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
| | - Daniela Quaglia
- Department of ChemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
| | - Ali Fendri
- Department of ChemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
| | - Adem H. Parisien
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
- Department of BiochemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
| | - Jonathan N. Besna
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
- Department of BiochemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
| | - Saathanan Iyathurai
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
- Department of BiochemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
| | - Joelle N. Pelletier
- Department of ChemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- Center for Green Chemistry and Catalysis (CGCC)Université de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
- PROTEOThe Québec Network for Research on Protein Function Engineering and Applications Québec QC−G1V 0A6 Canada
- Department of BiochemistryUniversité de Montréal 2900 Édouard-Montpetit Montréal QC H3T 1J4 Canada
| |
Collapse
|
7
|
Mounkoro P, Michel T, Blandin S, Golinelli-Cohen MP, Davioud-Charvet E, Meunier B. Investigating the mode of action of the redox-active antimalarial drug plasmodione using the yeast model. Free Radic Biol Med 2019; 141:269-278. [PMID: 31238126 DOI: 10.1016/j.freeradbiomed.2019.06.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
Abstract
Malaria is caused by protozoan parasites and remains a major public health issue in subtropical areas. Plasmodione (3-[4-(trifluoromethyl)benzyl]-menadione) is a novel early lead compound displaying fast-acting antimalarial activity. Treatment with this redox active compound disrupts the redox balance of parasite-infected red blood cells. In vitro, the benzoyl analogue of plasmodione can act as a subversive substrate of the parasite flavoprotein NADPH-dependent glutathione reductase, initiating a redox cycling process producing ROS. Whether this is also true in vivo remains to be investigated. Here, we used the yeast model to investigate the mode of action of plasmodione and uncover enzymes and pathways involved in its activity. We showed that plasmodione is a potent inhibitor of yeast respiratory growth, that in drug-treated cells, the ROS-sensitive aconitase was impaired and that cells with a lower oxidative stress defence were highly sensitive to the drug, indicating that plasmodione may act via an oxidative stress. We found that the mitochondrial respiratory chain flavoprotein NADH-dehydrogenases play a key role in plasmodione activity. Plasmodione and metabolites act as substrates of these enzymes, the reaction resulting in ROS production. This in turn would damage ROS-sensitive enzymes leading to growth arrest. Our data further suggest that plasmodione is a pro-drug whose activity is mainly mediated by its benzhydrol and benzoyl metabolites. Our results in yeast are coherent with existing data obtained in vitro and in Plasmodium falciparum, and provide additional hypotheses that should be investigated in parasites.
Collapse
Affiliation(s)
- Pierre Mounkoro
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Thomas Michel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Stéphanie Blandin
- Université de Strasbourg, CNRS, Inserm, UPR9022/U1257, Mosquito Immune Responses (MIR), F-67000, Strasbourg, France
| | - Marie-Pierre Golinelli-Cohen
- Institut de Chimie des Substances Naturelles (ICSN), CNRS, UPR 2301, Univ. Paris-Sud Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Elisabeth Davioud-Charvet
- Université de Strasbourg, Université de Haute-Alsace, Centre National de la Recherche Scientifique (CNRS), LIMA-UMR 7042, Team Bioorganic and Medicinal Chemistry, ECPM 25 Rue Becquerel, 67087, Strasbourg, France
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
8
|
Tavanti M, Porter JL, Sabatini S, Turner NJ, Flitsch SL. Panel of New Thermostable CYP116B Self-Sufficient Cytochrome P450 Monooxygenases that Catalyze C−H Activation with a Diverse Substrate Scope. ChemCatChem 2018. [DOI: 10.1002/cctc.201701510] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michele Tavanti
- School of Chemistry, Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Joanne L. Porter
- School of Chemistry, Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Selina Sabatini
- School of Chemistry, Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Nicholas J. Turner
- School of Chemistry, Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Sabine L. Flitsch
- School of Chemistry, Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
9
|
Sarkar MR, Lee JHZ, Bell SG. The Oxidation of Hydrophobic Aromatic Substrates by Using a Variant of the P450 Monooxygenase CYP101B1. Chembiochem 2017; 18:2119-2128. [PMID: 28868671 DOI: 10.1002/cbic.201700316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 11/10/2022]
Abstract
The cytochrome P450 monooxygenase CYP101B1, from a Novosphingobium bacterium is able to bind and oxidise aromatic substrates but at a lower activity and efficiency than norisoprenoids and monoterpenoid esters. Histidine 85 of CYP101B1 aligns with tyrosine 96 of CYP101A1, which, in the latter enzyme forms the only hydrophilic interaction with its substrate, camphor. The histidine residue of CYP101B1 was mutated to phenylalanine with the aim of improving the activity of the enzyme for hydrophobic substrates. The H85F mutant lowered the binding affinity and activity of the enzyme for β-ionone and altered the oxidation selectivity. This variant also showed enhanced affinity and activity towards alkylbenzenes, styrenes and methylnaphthalenes. For example the rate of product formation for acenaphthene oxidation was improved sixfold to 245 nmol per nmol CYP per min. Certain disubstituted naphthalenes and substrates, such as phenylcyclohexane and biphenyls, were oxidised with lower activity by the H85F variant. Variants at H85 (A and G) designed to introduce additional space into the active site so as to accommodate these larger substrates did not improve the oxidation activity. As the H85F mutant of CYP101B1 improved the oxidation of hydrophobic substrates, this residue is likely to be in the substrate binding pocket or the access channel of the enzyme. The side chain of the histidine might interact with the carbonyl groups of the favoured norisoprenoid substrates of CYP101B1.
Collapse
Affiliation(s)
- Md Raihan Sarkar
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Joel H Z Lee
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
10
|
Kammoonah S, Prasad B, Balaraman P, Mundhada H, Schwaneberg U, Plettner E. Selecting of a cytochrome P450 cam SeSaM library with 3-chloroindole and endosulfan - Identification of mutants that dehalogenate 3-chloroindole. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:68-79. [PMID: 28923662 DOI: 10.1016/j.bbapap.2017.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 11/25/2022]
Abstract
Cytochrome P450cam (a camphor hydroxylase) from the soil bacterium Pseudomonas putida shows potential importance in environmental applications such as the degradation of chlorinated organic pollutants. Seven P450cam mutants generated from Sequence Saturation Mutagenesis (SeSaM) and isolated by selection on minimal media with either 3-chloroindole or the insecticide endosulfan were studied for their ability to oxidize of 3-chloroindole to isatin. The wild-type enzyme did not accept 3-chloroindole as a substrate. Mutant (E156G/V247F/V253G/F256S) had the highest maximal velocity in the conversion of 3-chloroindole to isatin, whereas mutants (T56A/N116H/D297N) and (G60S/Y75H) had highest kcat/KM values. Six of the mutants had more than one mutation, and within this set, mutation of residues 297 and 179 was observed twice. Docking simulations were performed on models of the mutant enzymes; the wild-type did not accommodate 3-chloroindole in the active site, whereas all the mutants did. We propose two potential reaction pathways for dechlorination of 3-chloroindole. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Shaima Kammoonah
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Brinda Prasad
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Priyadarshini Balaraman
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Hemanshu Mundhada
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Erika Plettner
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
11
|
Tavanti M, Parmeggiani F, Castellanos JRG, Mattevi A, Turner NJ. One-Pot Biocatalytic Double Oxidation of α-Isophorone for the Synthesis of Ketoisophorone. ChemCatChem 2017. [DOI: 10.1002/cctc.201700620] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Michele Tavanti
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester United Kingdom
| | - Fabio Parmeggiani
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester United Kingdom
| | - J. Rubén Gómez Castellanos
- Department of Biology and Biotechnology “Lazzaro Spallanzani”; University of Pavia; Via Ferrata 9 27100 Pavia Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”; University of Pavia; Via Ferrata 9 27100 Pavia Italy
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester United Kingdom
| |
Collapse
|
12
|
Eichler A, Gricman Ł, Herter S, Kelly PP, Turner NJ, Pleiss J, Flitsch SL. Enantioselective Benzylic Hydroxylation Catalysed by P450 Monooxygenases: Characterisation of a P450cam Mutant Library and Molecular Modelling. Chembiochem 2016; 17:426-32. [DOI: 10.1002/cbic.201500536] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Anja Eichler
- School of Chemistry; Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Łukasz Gricman
- Institute for Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Susanne Herter
- School of Chemistry; Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Paul P. Kelly
- School of Chemistry; Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Nicholas J. Turner
- School of Chemistry; Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Jürgen Pleiss
- Institute for Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Sabine L. Flitsch
- School of Chemistry; Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
13
|
Both P, Busch H, Kelly PP, Mutti FG, Turner NJ, Flitsch SL. Whole-Cell Biocatalysts for Stereoselective C-H Amination Reactions. Angew Chem Int Ed Engl 2015; 55:1511-3. [PMID: 26689856 DOI: 10.1002/anie.201510028] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 01/30/2023]
Abstract
Enantiomerically pure chiral amines are ubiquitous chemical building blocks in bioactive pharmaceutical products and their synthesis from simple starting materials is of great interest. One of the most attractive strategies is the stereoselective installation of a chiral amine through C-H amination, which is a challenging chemical transformation. Herein we report the application of a multienzyme cascade, generated in a single bacterial whole-cell system, which is able to catalyze stereoselective benzylic aminations with ee values of 97.5%. The cascade uses four heterologously expressed recombinant enzymes with cofactors provided by the host cell and isopropyl amine added as the amine donor. The cascade presents the first example of the successful de novo design of a single whole-cell biocatalyst for formal stereoselective C-H amination.
Collapse
Affiliation(s)
- Peter Both
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Hanna Busch
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Paul P Kelly
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Francesco G Mutti
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Nicholas J Turner
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Sabine L Flitsch
- School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
14
|
Both P, Busch H, Kelly PP, Mutti FG, Turner NJ, Flitsch SL. Ganzzellen-Biokatalysator für stereoselektive C-H-Aminierungen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201510028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Peter Both
- School of Chemistry, Manchester Institute of Biotechnology; The University of Manchester; 131 Princess Street Manchester M1 7DN Vereinigtes Königreich
| | - Hanna Busch
- School of Chemistry, Manchester Institute of Biotechnology; The University of Manchester; 131 Princess Street Manchester M1 7DN Vereinigtes Königreich
| | - Paul P. Kelly
- School of Chemistry, Manchester Institute of Biotechnology; The University of Manchester; 131 Princess Street Manchester M1 7DN Vereinigtes Königreich
| | - Francesco G. Mutti
- School of Chemistry, Manchester Institute of Biotechnology; The University of Manchester; 131 Princess Street Manchester M1 7DN Vereinigtes Königreich
| | - Nicholas J. Turner
- School of Chemistry, Manchester Institute of Biotechnology; The University of Manchester; 131 Princess Street Manchester M1 7DN Vereinigtes Königreich
| | - Sabine L. Flitsch
- School of Chemistry, Manchester Institute of Biotechnology; The University of Manchester; 131 Princess Street Manchester M1 7DN Vereinigtes Königreich
| |
Collapse
|