1
|
Synthesis of Tyrosol and Hydroxytyrosol Glycofuranosides and Their Biochemical and Biological Activities in Cell-Free and Cellular Assays. Molecules 2021; 26:molecules26247607. [PMID: 34946703 PMCID: PMC8709365 DOI: 10.3390/molecules26247607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Tyrosol (T) and hydroxytyrosol (HOT) and their glycosides are promising candidates for applications in functional food products or in complementary therapy. A series of phenylethanoid glycofuranosides (PEGFs) were synthesized to compare some of their biochemical and biological activities with T and HOT. The optimization of glycosylation promoted by environmentally benign basic zinc carbonate was performed to prepare HOT α-L-arabino-, β-D-apio-, and β-D-ribofuranosides. T and HOT β-D-fructofuranosides, prepared by enzymatic transfructosylation of T and HOT, were also included in the comparative study. The antioxidant capacity and DNA-protective potential of T, HOT, and PEGFs on plasmid DNA were determined using cell-free assays. The DNA-damaging potential of the studied compounds for human hepatoma HepG2 cells and their DNA-protective potential on HepG2 cells against hydrogen peroxide were evaluated using the comet assay. Experiments revealed a spectrum of different activities of the studied compounds. HOT and HOT β-D-fructofuranoside appear to be the best-performing scavengers and protectants of plasmid DNA and HepG2 cells. T and T β-D-fructofuranoside display almost zero or low scavenging/antioxidant activity and protective effects on plasmid DNA or HepG2 cells. The results imply that especially HOT β-D-fructofuranoside and β-D-apiofuranoside could be considered as prospective molecules for the subsequent design of supplements with potential in food and health protection.
Collapse
|
2
|
Dong H, Du W, Yao Z, Wu M, Luo H, He Y, Cao S. First total syntheses of two natural glycosides. Carbohydr Res 2020; 499:108200. [PMID: 33246574 DOI: 10.1016/j.carres.2020.108200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/18/2022]
Abstract
Isosyringinoside (1) and 3-(O-β-d-glucopyranosyl)-α-(O-β-d-glucopyranosyl)-4-hydroxy phenylethanol (2), the natural bioactive compounds contained unique structures, were first totally synthesized using easily available materials in short convenient routes with overall yields of 20.2% and 27.0%, respectively. An efficient total synthesis of 1 was developed in six steps, which contained two key steps of highly regioselective glycosylation without any selective protection steps. The seven-step synthesis of 2 involved two steps of regioselective glycosylations using BF3-O(C2H5)2 and TMSOTf as catalysts, respectively.
Collapse
Affiliation(s)
- Hongbo Dong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610052, China.
| | - Weihong Du
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610052, China
| | - Zhongquan Yao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610052, China
| | - Min Wu
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610052, China
| | - Hongbing Luo
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610052, China
| | - Yujiao He
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610052, China
| | - Shenghua Cao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610052, China
| |
Collapse
|
3
|
Horvathova E, Mastihubova M, Karnisova Potocka E, Kis P, Galova E, Sevcovicova A, Klapakova M, Hunakova L, Mastihuba V. Comparative study of relationship between structure of phenylethanoid glycopyranosides and their activities using cell-free assays and human cells cultured in vitro. Toxicol In Vitro 2019; 61:104646. [PMID: 31518671 DOI: 10.1016/j.tiv.2019.104646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 01/19/2023]
Abstract
The study focused on protective potential of phytochemicals applicable in prevention and health protection is of great importance. Various structures of these compounds and a wide range of their biological activities have inspired organic chemists to sythesize their effective analogues in order to further increase their efficacy. The aims of our study were (i) to synthesize phenylethanoid glycopyranosides: salidroside (SALI - tyrosol β-d-glucopyranoside), tyrosol β-d-galactopyranoside (TYBGAL), tyrosol α-d-galactopyranoside (TYAGAL), tyrosol α-d-mannopyranoside (TYAMAN), hydroxytyrosol α-d-mannopyranoside (HOTAMA), homosyringyl β-d-glucopyranoside (HSYGLU), hydroxytyrosol β-d-xylopyranoside (HOTXYL) and hydroxysalidroside (HOSALI); (ii) to determine their antioxidant capacities (cell-free approaches); (iii) to evaluate their cytotoxicity (MTT test), protectivity against hydrogen peroxide (H2O2; comet assay) and effect on the intracellular glutathione level (iGSH; flow cytometry) in experimental system utilizing human hepatoma HepG2 cells. HOSALI, HOTAMA, HOTXYL and HSYGLU manifested the highest antioxidant capacity in cell-free assays and they were most active in protection of HepG2 cells against H2O2. On the other hand, pre-treatment of HepG2 cells with SALI had protective effects even though SALI displayed almost no activity in cell-free assays. Differences in the efficacy of the analogues revealed that structures of their molecules in terms of aglycone combined with sugar moiety affect their activities.
Collapse
Affiliation(s)
- Eva Horvathova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovak Republic.
| | - Maria Mastihubova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Elena Karnisova Potocka
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Peter Kis
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Eliska Galova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, 842 15 Bratislava, Slovak Republic
| | - Andrea Sevcovicova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, 842 15 Bratislava, Slovak Republic
| | - Martina Klapakova
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynska dolina, 842 15 Bratislava, Slovak Republic
| | - Luba Hunakova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovak Republic
| | - Vladimir Mastihuba
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| |
Collapse
|
4
|
Liu DK, Xiong DC, Wu X, Li Q, Ye XS. Rapid glycosylation of 2′-benzoylphenyl glycosides promoted by TfOH. Org Chem Front 2019. [DOI: 10.1039/c9qo00629j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new glycosylation protocol based on 2′-benzoylphenyl glycosides has been developed. These glycosyl donors could be rapidly activated by TfOH at room temperature.
Collapse
Affiliation(s)
- Da-Ke Liu
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Xia Wu
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Qin Li
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| |
Collapse
|
5
|
Kulkarni SS, Wang CC, Sabbavarapu NM, Podilapu AR, Liao PH, Hung SC. "One-Pot" Protection, Glycosylation, and Protection-Glycosylation Strategies of Carbohydrates. Chem Rev 2018; 118:8025-8104. [PMID: 29870239 DOI: 10.1021/acs.chemrev.8b00036] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbohydrates, which are ubiquitously distributed throughout the three domains of life, play significant roles in a variety of vital biological processes. Access to unique and homogeneous carbohydrate materials is important to understand their physical properties, biological functions, and disease-related features. It is difficult to isolate carbohydrates in acceptable purity and amounts from natural sources. Therefore, complex saccharides with well-defined structures are often most conviently accessed through chemical syntheses. Two major hurdles, regioselective protection and stereoselective glycosylation, are faced by carbohydrate chemists in synthesizing these highly complicated molecules. Over the past few years, there has been a radical change in tackling these problems and speeding up the synthesis of oligosaccharides. This is largely due to the development of one-pot protection, one-pot glycosylation, and one-pot protection-glycosylation protocols and streamlined approaches to orthogonally protected building blocks, including those from rare sugars, that can be used in glycan coupling. In addition, new automated strategies for oligosaccharide syntheses have been reported not only for program-controlled assembly on solid support but also by the stepwise glycosylation in solution phase. As a result, various sugar molecules with highly complex, large structures could be successfully synthesized. To summarize these recent advances, this review describes the methodologies for one-pot protection and their one-pot glycosylation into the complex glycans and the chronological developments associated with automated syntheses of oligosaccharides.
Collapse
Affiliation(s)
- Suvarn S Kulkarni
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | | | | | - Ananda Rao Podilapu
- Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| | - Pin-Hsuan Liao
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Shang-Cheng Hung
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
6
|
Khong DT, Judeh ZMA. Total synthesis of phenylpropanoid glycoside osmanthuside-B6 facilitated by double isomerisation of glucose–rhamnose orthoesters. Org Biomol Chem 2017; 15:2638-2646. [DOI: 10.1039/c7ob00198c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osmanthuside-B6 was synthesized in 22% overall yield. The synthesis involved a newly discovered glucose–rhamnose orthoester double isomerization process.
Collapse
Affiliation(s)
- Duc Thinh Khong
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Zaher M. A. Judeh
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| |
Collapse
|
7
|
Chen J, Lu F, Si X, Nie X, Chen J, Lu R, Xu J. High Yield Production of Natural Phenolic Alcohols from Woody Biomass Using a Nickel-Based Catalyst. CHEMSUSCHEM 2016; 9:3353-3360. [PMID: 27860423 DOI: 10.1002/cssc.201601273] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/12/2016] [Indexed: 06/06/2023]
Abstract
Efficient depolymerization of woody biomass to produce natural phenolic alcohols not only preserves the original structure of lignin, but also makes the depolymerization process atom-efficient. Here, high yield production of natural phenolic alcohols (38.7 wt %) from woody biomass has been achieved using a Ni/C catalyst in a methanol-water co-solvent. The Ni-based catalyst can efficiently etherify the Cα -OH group in lignin β-O-4 motifs under hydrogen atmosphere, which can break the hydrogen bond between the Cβ -O oxygen and the Cα -OH proton to facilitate the Cβ -O cleavage. It was reported that water can also accelerate the etherification of raw lignin with methanol through in situ formation of acid. Our results suggest that breaking the intramolecular hydrogen bonds can accelerate the Cβ -O cleavage, keeping the original structure of lignin unchanged. This work highlights the significance of structure modification in lignin depolymerization and displays a clear potential for the valorization of whole biomass.
Collapse
Affiliation(s)
- Jiazhi Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Fang Lu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaoqin Si
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Nie
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Junsheng Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Rui Lu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Xu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|