1
|
Gandhi R, Chopade N, Deshmukh PK, Ingle RG, Harde M, Lakade S, More MP, Tade RS, Bhadane MS. Unveiling cyclodextrin conjugation as multidentate excipients: An exploratory journey across industries. Carbohydr Res 2025; 549:109357. [PMID: 39708386 DOI: 10.1016/j.carres.2024.109357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
The discovery of branched molecules like dextrin by Schardinger in 1903 marked the inception of cyclodextrin (CD) utilization, catalyzing its journey from laboratory experimentation to widespread commercialization within the pharmaceutical industry. CD, a cyclic oligosaccharide containing glucopyranose units, acts as a versatile guest molecule, forming inclusion complexes (ICs) with various host molecules. Computational studies have become instrumental in elucidating the intricate interactions between β-CD and guest molecules, enabling the prediction of binding energy, forces, affinity, and complex stability. The computational approach has established robust correlations with experimental outcomes, enhancing our understanding of CD-mediated complexation phenomena. This comprehensive review delves into the CD based Inclusion complex (CDIC) formation and a myriad of components, including drug molecules, amino acids, vitamins, and volatile oils. These complexes find applications across diverse industries, ranging from pharmaceuticals to nutraceuticals, food, fragrance, and beyond. In the pharmaceutical realm, β- CDICs offer innovative solutions for enhancing drug solubility, stability, and bioavailability, thus overcoming formulation challenges associated with poorly water-soluble drugs. Furthermore, the versatility of CDs extends beyond pharmaceuticals, with applications in the encapsulation of phytoactive compounds in nutraceuticals and the enhancing flavor, aroma in food and fragrance industries. This review underscores the pivotal role of CDs conjugation in modern drug delivery systems, emphasizing the importance of interdisciplinary approaches that integrate computational modeling with experimental validation. As the pharmaceutical landscape continues to evolve, CDs-based formulations stand poised to drive innovation and address the ever-growing demand for efficacious and patient-friendly drug delivery solutions.
Collapse
Affiliation(s)
- Roshani Gandhi
- Department of Pharmacognosy, Laddhad College of Pharmacy, Dist-Buldhana, M.S. 443 001, India
| | - Nishant Chopade
- Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Malkapur, Dist-Buldhana, M.S. 443 101, India
| | - Prashant K Deshmukh
- Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Malkapur, Dist-Buldhana, M.S. 443 101, India
| | - Rahul G Ingle
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to be University) Sawangi, Wardha, M.S. 442004, India
| | - Minal Harde
- Department of Pharmaceutical Chemistry, PES's Modern College of Pharmacy, Nigdi, Pune, 411044, India
| | - Sameer Lakade
- Department of Pharmaceutics, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Chinchwad, Pune, 411019, India
| | | | - Rahul S Tade
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist - Dhule, M.S. 425405, India
| | - Mahesh S Bhadane
- Department of Physics, Rayat Shikshan Sanstha's Dada Patil Mahavidyalaya, Karjat, Dist - Ahemadnagar, M.S. 414 402, India
| |
Collapse
|
2
|
Cao Z, Liu J, Yang X. Deformable nanocarriers for enhanced drug delivery and cancer therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230037. [PMID: 39439489 PMCID: PMC11491306 DOI: 10.1002/exp.20230037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/28/2024] [Indexed: 10/25/2024]
Abstract
Recently, the field of nanomedicine has witnessed substantial advancements in the development of nanocarriers for targeted drug delivery, emerges as promising platforms to enhance therapeutic efficacy and minimize adverse effects associated with conventional chemotherapy. Notably, deformable nanocarriers have garnered considerable attention due to their unique capabilities of size changeable, tumor-specific aggregation, stimuli-triggered disintegration, and morphological transformations. These deformable nanocarriers present significant opportunities for revolutionizing drug delivery strategies, by responding to specific stimuli or environmental cues, enabling achieved various functions at the tumor site, including size-shrinkage nanocarriers enhance drug penetration, aggregative nanocarriers enhance retention effect, disintegrating nanocarriers enable controlled drug release, and shape-changing nanocarriers improve cellular uptake, allowing for personalized treatment approaches and combination therapies. This review provides an overview of recent developments and applications of deformable nanocarriers for enhancing tumor therapy, underscores the diverse design strategies employed to create deformable nanocarriers and elucidates their remarkable potential in targeted tumor therapy.
Collapse
Affiliation(s)
- Ziyang Cao
- Department of General SurgeryGuangzhou First People's Hospitalthe Second Affiliated HospitalSouth China University of TechnologyGuangzhouPeople's Republic of China
- Center for Medical Research on Innovation and TranslationInstitute of Clinical MedicineSchool of MedicineGuangzhou First People's HospitalSouth China University of TechnologyGuangzhouPeople's Republic of China
| | - Jing Liu
- School of ChemistryChemical Engineering and Biotechnology Nanyang Technological UniversitySingaporeSingapore
| | - Xianzhu Yang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhouGuangdongPeople's Republic of China
| |
Collapse
|
3
|
L-Arginine-Derived Polyamidoamine Oligomers Bearing at Both Ends β-Cyclodextrin Units as pH-Sensitive Curcumin Carriers. Polymers (Basel) 2022; 14:polym14153193. [PMID: 35956707 PMCID: PMC9371169 DOI: 10.3390/polym14153193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
The aza-Michael polyaddition of L-arginine and N,N′-methylene-bis-acrylamide gives the biocompatible and easily cell-internalized polyamidoamine ARGO7. By controlled synthesis, two ARGO7 oligomers, namely a trimer and a pentamer, bearing acrylamide terminal units, were obtained as precursors of the β-cyclodextrin-end-terminated oligomers P3 and P5, which have been shown to encapsulate curcumin at both pH 7.4 and 4.5. After lyophilization, P3- and P5-curcumin complexes gave stable water solutions. The apparent solubility of encapsulated curcumin was in the range 20–51 μg mL−1, that is, three orders of magnitude higher than the water solubility of free curcumin (0.011 μg mL−1). The drug release profiles showed induction periods both at pH levels 4.5 and 7.4, suggesting a diffusive release mechanism, as confirmed by kinetic studies. The release rate of curcumin was higher at pH 7.4 than at pH 4.5 and, in both cases, it was higher for the P5 complex. Encapsulated curcumin was more photostable than the free drug. Molecular mechanics and molecular dynamics simulations explain at atomistic level the formation of aggregates due to favorable van der Waals interactions. The drug molecules interact with the external surface of carriers or form inclusion complexes with the β-cyclodextrin cavities. The aggregate stability is higher at pH 4.5.
Collapse
|
4
|
Raffaini G, Catauro M. Surface Interactions between Ketoprofen and Silica-Based Biomaterials as Drug Delivery System Synthesized via Sol–Gel: A Molecular Dynamics Study. MATERIALS 2022; 15:ma15082759. [PMID: 35454451 PMCID: PMC9028380 DOI: 10.3390/ma15082759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022]
Abstract
Biomaterial-based drug delivery systems for a controlled drug release are drawing increasing attention thanks to their possible pharmaceutical and biomedical applications. It is important to control the local administration of drugs, especially when the drug exhibits problems diffusing across biological barriers. Thus, in an appropriate concentration, it would be released in situ, reducing side effects due to interactions with the biological environment after implantation. A theoretical study based on Molecular Mechanics and Molecular Dynamics methods is performed to investigate possible surface interactions between the amorphous SiO2 surface and the ketoprofen molecules, an anti-inflammatory drug, considering the role of drug concentration. These theoretical results are compared with experimental data obtained by analyzing, through Fourier transform infrared spectroscopy (FT-IR), the interaction between the SiO2 amorphous surface and two percentages of the ketoprofen drug entrapped in a silica matrix obtained via the sol–gel method and dried materials. The loaded drug in these amorphous bioactive material forms hydrogen bonds with the silica surface, as found in this theoretical study. The surface interactions are essential to have a new generation of biomaterials not only important for biocompatibility, with specific structural and functional properties, but also able to incorporate anti-inflammatory agents for release into the human body.
Collapse
Affiliation(s)
- Giuseppina Raffaini
- Department of Chemistry, Materials, and Chemical Engineering ‘‘Giulio Natta’’, Politecnico di Milano, Piazza L. Da Vinci 32, 20131 Milano, Italy
- Correspondence: (G.R.); (M.C.)
| | - Michelina Catauro
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy
- Correspondence: (G.R.); (M.C.)
| |
Collapse
|
5
|
Raffaini G, Ganazzoli F. Understanding Surface Interaction and Inclusion Complexes between Piroxicam and Native or Crosslinked β-Cyclodextrins: The Role of Drug Concentration. Molecules 2020; 25:molecules25122848. [PMID: 32575617 PMCID: PMC7355541 DOI: 10.3390/molecules25122848] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022] Open
Abstract
Drug concentration plays an important role in the interaction with drug carriers affecting the kinetics of release process and toxicology effects. Cyclodextrins (CDs) can solubilize hydrophobic drugs in water enhancing their bioavailability. In this theoretical study based on molecular mechanics and molecular dynamics methods, the interactions between β-cyclodextrin and piroxicam, an important nonsteroidal anti-inflammatory drug, were investigated. At first, both host–guest complexes with native β-CD in the 1:1 and in 2:1 stoichiometry were considered without assuming any initial a priori inclusion: the resulting inclusion complexes were in good agreement with literature NMR data. The interaction between piroxicam and a β-CD nanosponge (NS) was then modeled at different concentrations. Two inclusion mechanisms were found. Moreover, piroxicam can interact with the external NS surface or with its crosslinkers, also forming one nanopore. At larger concentration, a nucleation process of drug aggregation induced by the first layer of adsorbed piroxicam molecules is observed. The flexibility of crosslinked β-CDs, which may be swollen or quite compact, changing the surface area accessible to drug molecules, and the dimension of the aggregate nucleated on the NS surface are important factors possibly affecting the kinetics of release, which shall be theoretically studied in more detail at specific concentrations.
Collapse
Affiliation(s)
- Giuseppina Raffaini
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza L. Da Vinci 32, 20131 Milano, Italy;
- INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, 20133 Milano, Italy
- Correspondence: ; Tel.: +39-02-23993068
| | - Fabio Ganazzoli
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza L. Da Vinci 32, 20131 Milano, Italy;
- INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, 20133 Milano, Italy
| |
Collapse
|
8
|
Nanoassemblies based on non-ionic amphiphilic cyclodextrin hosting Zn(II)-phthalocyanine and docetaxel: Design, physicochemical properties and intracellular effects. Colloids Surf B Biointerfaces 2016; 146:590-7. [DOI: 10.1016/j.colsurfb.2016.06.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 01/08/2023]
|