1
|
Kaabel S, Arciszewski J, Borchers TH, Therien JPD, Friščić T, Auclair K. Solid-State Enzymatic Hydrolysis of Mixed PET/Cotton Textiles. CHEMSUSCHEM 2023; 16:e202201613. [PMID: 36165763 DOI: 10.1002/cssc.202201613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Waste polyester textiles are not recycled due to separation challenges and partial structural degradation during use and recycling. Chemical recycling of polyethylene terephthalate (PET) textiles through depolymerization can provide a feedstock of recycled monomers to make "as-new" polymers. While enzymatic PET recycling is a more selective and more sustainable approach, methods in development, however, have thus far been limited to clean, high-quality PET feedstocks, and require an energy-intensive melt-amorphization step ahead of enzymatic treatment. Here, high-crystallinity PET in mixed PET/cotton textiles could be directly and selectively depolymerized to terephthalic acid (TPA) by using a commercial cutinase from Humicola insolens under moist-solid reaction conditions, affording up to 30±2 % yield of TPA. The process was readily combined with cotton depolymerization through simultaneous or sequential application of the cellulase enzymes CTec2®, providing up to 83±4 % yield of glucose without any negative influence on the TPA yield.
Collapse
Affiliation(s)
- Sandra Kaabel
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
- Department of Bioproducts and Biosystems, Aalto University, 02150, Espoo, Finland
| | - Jane Arciszewski
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
| | - Tristan H Borchers
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
| | - J P Daniel Therien
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada
| |
Collapse
|
2
|
Ambrose-Dempster E, Leipold L, Dobrijevic D, Bawn M, Carter EM, Stojanovski G, Sheppard TD, Jeffries JWE, Ward JM, Hailes HC. Mechanoenzymatic reactions for the hydrolysis of PET †. RSC Adv 2023; 13:9954-9962. [PMID: 37006375 PMCID: PMC10050947 DOI: 10.1039/d3ra01708g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Recent advances in the enzymatic degradation of poly(ethylene terphthalate) (PET) have led to a number of PET hydrolytic enzymes and mutants being developed. With the amount of PET building up in the natural world, there is a pressing need to develop scalable methods of breaking down the polymer into its monomers for recycling or other uses. Mechanoenzymatic reactions have gained traction recently as a green and efficient alternative to traditional biocatalytic reactions. For the first time we report increased yields of PET degradation by whole cell PETase enzymes by up to 27-fold by utilising ball milling cycles of reactive aging, when compared with typical solution-based reactions. This methodology leads to up to a 2600-fold decrease in the solvent required when compared with other leading degradation reactions in the field and a 30-fold decrease in comparison to reported industrial scale PET hydrolysis reactions. Mechanoenzymatic reactions are described for the degradation of different PET materials using whole cell PETases.![]()
Collapse
Affiliation(s)
| | - Leona Leipold
- Department of Chemistry, University College London20 Gordon StreetLondonWC1H 0AJUK
| | - Dragana Dobrijevic
- Department of Biochemical Engineering, University College LondonBernard Katz Building, Gower StreetLondonWC1E 6BTUK
| | - Maria Bawn
- Department of Biochemical Engineering, University College LondonBernard Katz Building, Gower StreetLondonWC1E 6BTUK
| | - Eve M. Carter
- Department of Chemistry, University College London20 Gordon StreetLondonWC1H 0AJUK
| | - Gorjan Stojanovski
- Department of Chemistry, University College London20 Gordon StreetLondonWC1H 0AJUK
- Department of Biochemical Engineering, University College LondonBernard Katz Building, Gower StreetLondonWC1E 6BTUK
| | - Tom D. Sheppard
- Department of Chemistry, University College London20 Gordon StreetLondonWC1H 0AJUK
| | - Jack W. E. Jeffries
- Department of Biochemical Engineering, University College LondonBernard Katz Building, Gower StreetLondonWC1E 6BTUK
| | - John M. Ward
- Department of Biochemical Engineering, University College LondonBernard Katz Building, Gower StreetLondonWC1E 6BTUK
| | - Helen C. Hailes
- Department of Chemistry, University College London20 Gordon StreetLondonWC1H 0AJUK
| |
Collapse
|
3
|
Green Strategies for the Preparation of Enantiomeric 5-8-Membered Carbocyclic β-Amino Acid Derivatives through CALB-Catalyzed Hydrolysis. Molecules 2022; 27:molecules27082600. [PMID: 35458798 PMCID: PMC9032184 DOI: 10.3390/molecules27082600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Candida antarctica lipase B-catalyzed hydrolysis of carbocyclic 5−8-membered cis β-amino esters was carried out in green organic media, under solvent-free and ball-milling conditions. In accordance with the high enantioselectivity factor (E > 200) observed in organic media, the preparative-scale resolutions of β-amino esters were performed in tBuOMe at 65 °C. The unreacted β-amino ester enantiomers (1R,2S) and product β-amino acid enantiomers (1S,2R) were obtained with modest to excellent enantiomeric excess (ee) values (ees > 62% and eep > 96%) and in good chemical yields (>25%) in one or two steps. The enantiomers were easily separated by organic solvent/H2O extraction.
Collapse
|
4
|
Arciszewski J, Auclair K. Mechanoenzymatic Reactions Involving Polymeric Substrates or Products. CHEMSUSCHEM 2022; 15:e202102084. [PMID: 35104019 DOI: 10.1002/cssc.202102084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Mechanoenzymology is an emerging field in which mechanical mixing is used to sustain enzymatic reactions in low-solvent or solvent-free mixtures. Many enzymes have been reported that thrive under such conditions. Considering the central role of biopolymers and synthetic polymers in our society, this minireview highlights the use of mechanoenzymology for the synthesis or depolymerization of oligomeric or polymeric materials. In contrast to traditional in-solution reactions, solvent-free mechanoenzymology has the advantages of avoiding solubility issues, proceeding in a minimal volume, and reducing solvent waste while potentially improving the reaction efficiency and accessing new reactivity. It is expected that this strategy will continue to gain popularity and find more applications.
Collapse
Affiliation(s)
- Jane Arciszewski
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| |
Collapse
|
5
|
Gamboa-Velázquez G, Juaristi E. Mechanoenzymology in the Kinetic Resolution of β-Blockers: Propranolol as a Case Study. ACS ORGANIC & INORGANIC AU 2022; 2:343-350. [PMID: 36855594 PMCID: PMC9955203 DOI: 10.1021/acsorginorgau.1c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent advances in biotechnology, protein engineering, and enzymatic immobilization have made it possible to carry out biocatalytic transformations through alternative non-conventional activation strategies. In particular, mechanoenzymology (i.e., the use of the mechanical force produced by milling or grinding to activate a biotransformation) has become a new area in so-called "green chemistry", reshaping key fundaments of biocatalysis and leading to the exploration of enzymatic transformations under more sustainable conditions. Significantly, numerous chiral active pharmaceutical ingredients have been synthesized via mechanoenzymatic methods, boosting the use of biocatalysis in the synthesis of chiral drugs. In this regard and aiming to widen the scope of the young field of mechanoenzymology, a dual kinetic resolution of propranolol precursors was explored. The biocatalytic methodology mediated by Candida antarctica Lipase B (CALB) and activated by mechanical force allowed the isolation of both enantiomeric precursors of propranolol with high enantiomeric excess (up to 99% ee), complete conversion (c = 50%), and excellent enantiodifferentiation (E > 300). Moreover, the enantiomerically pure products were used to synthesize both enantiomers of the β-blocker propranolol with high enantiopurity.
Collapse
Affiliation(s)
- Gonzalo Gamboa-Velázquez
- Departamento
de Química, Centro de Investigación
y de Estudios Avanzados, 07360 Ciudad de México, Mexico
| | - Eusebio Juaristi
- Departamento
de Química, Centro de Investigación
y de Estudios Avanzados, 07360 Ciudad de México, Mexico,El
Colegio Nacional, Luis
González Obregón 23, Centro Histórico, 06020 Ciudad de México, Mexico,
| |
Collapse
|
6
|
Ortega‐Rojas MA, Castillo E, Razo‐Hernández RS, Pastor N, Juaristi E, Escalante J. Effect of the Substituent and Amino Group Position on the Lipase‐Catalyzed Resolution of γ‐Amino Esters: A Molecular Docking Study Shedding Light on
Candida antarctica
lipase B Enantioselectivity. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Marina A. Ortega‐Rojas
- Instituto de Investigación en Ciencias Básicas y Aplicadas Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Edmundo Castillo
- Departamento de Ingeniería Celular y Biocatálisis Instituto de Biotecnología UNAM Apartado Postal 510–3 C.P. 62271 Cuernavaca Morelos México
| | - Rodrigo Said Razo‐Hernández
- Instituto de Investigación en Ciencias Básicas y Aplicadas Centro de Investigación en Dinámica Celular Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Nina Pastor
- Instituto de Investigación en Ciencias Básicas y Aplicadas Centro de Investigación en Dinámica Celular Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Eusebio Juaristi
- Departamento de Química Centro de Investigación y de Estudios Avanzados Av. Instituto Politécnico Nacional No. 2508 07360 Ciudad de México México
- El Colegio Nacional Luis González Obregón 23, Centro Histórico 06020 Ciudad de México México
| | - Jaime Escalante
- Instituto de Investigación en Ciencias Básicas y Aplicadas Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| |
Collapse
|
7
|
Pérez-Venegas M, Juaristi E. Mechanoenzymology: State of the Art and Challenges towards Highly Sustainable Biocatalysis. CHEMSUSCHEM 2021; 14:2682-2688. [PMID: 33882180 DOI: 10.1002/cssc.202100624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Global awareness of the importance of developing environmentally friendlier and more sustainable methods for the synthesis of valuable chemical compounds has led to the design of novel synthetic strategies, involving bio- and organocatalysis as well as the application of novel efficient and ground-breaking technologies such as present-day solvent-free mechanochemistry. In this regard, the evaluation of biocatalytic protocols mediated by the combination of mechanical activation and enzymatic catalysis has recently attracted the attention of the chemical community. Such mechanoenzymatic strategy represents an innovative and promising "green" approach in chemical synthesis that poses nevertheless new paradigms regarding the relative resilience of biomolecules to the mechanochemical stress and to the apparent high energy, at least in so-called hot-spots, during the milling process. Herein, relevant comments on the conceptualization of such mechanoenzymatic approach as a sustainable option in chemical synthesis, recent progress in the area, and associated challenges are discussed.
Collapse
Affiliation(s)
- Mario Pérez-Venegas
- Chemistry Department, McGill University, 801 Sherbrooke St. W., Montreal, QC, H3A 0B8, Canada
| | - Eusebio Juaristi
- Chemistry Department Centro de Investigación y de Estudios Avanzados, 07360, Ciudad de México, Mexico
- El Colegio Nacional, Luis González Obregón # 23, Centro Histórico, 06020, Ciudad de México, Mexico
| |
Collapse
|
8
|
Ardila-Fierro KJ, Hernández JG. Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. CHEMSUSCHEM 2021; 14:2145-2162. [PMID: 33835716 DOI: 10.1002/cssc.202100478] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Indexed: 05/22/2023]
Abstract
In recent years, mechanochemistry has been growing into a widely accepted alternative for chemical synthesis. In addition to their efficiency and practicality, mechanochemical reactions are also recognized for their sustainability. The association between mechanochemistry and Green Chemistry often originates from the solvent-free nature of most mechanochemical protocols, which can reduce waste production. However, mechanochemistry satisfies more than one of the Principles of Green Chemistry. In this Review we will present a series of examples that will clearly illustrate how mechanochemistry can significantly contribute to the fulfillment of Green Chemistry in a more holistic manner.
Collapse
Affiliation(s)
- Karen J Ardila-Fierro
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| |
Collapse
|
9
|
Shahmohammadi S, Fülöp F, Forró E. Efficient Synthesis of New Fluorinated β-Amino Acid Enantiomers through Lipase-Catalyzed Hydrolysis. Molecules 2020; 25:molecules25245990. [PMID: 33348842 PMCID: PMC7766834 DOI: 10.3390/molecules25245990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022] Open
Abstract
An efficient and novel enzymatic method has been developed for the synthesis of β-fluorophenyl-substituted β-amino acid enantiomers through lipase PSIM (Burkholderia cepasia) catalyzed hydrolysis of racemic β-amino carboxylic ester hydrochloride salts 3a–e in iPr2O at 45 °C in the presence of Et3N and H2O. Adequate analytical methods were developed for the enantio-separation of racemic β-amino carboxylic ester hydrochlorides 3a–e and β-amino acids 2a–e. Preparative-scale resolutions furnished unreacted amino esters (R)-4a–e and product amino acids (S)-5a–e with excellent ee values (≥99%) and good chemical yields (>48%).
Collapse
Affiliation(s)
- Sayeh Shahmohammadi
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (S.S.); (F.F.)
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (S.S.); (F.F.)
- Stereochemistry Research Group of the Hungarian Academy of Sciences, University of Szeged, H-6720 Szeged, Hungary
| | - Enikő Forró
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (S.S.); (F.F.)
- Stereochemistry Research Group of the Hungarian Academy of Sciences, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-544964; Fax: +36-62-545705
| |
Collapse
|
10
|
Avila-Ortiz CG, Juaristi E. Novel Methodologies for Chemical Activation in Organic Synthesis under Solvent-Free Reaction Conditions. Molecules 2020; 25:E3579. [PMID: 32781678 PMCID: PMC7464687 DOI: 10.3390/molecules25163579] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
One central challenge for XXI century chemists is the development of sustainable processes that do not represent a risk either to humanity or to the environment. In this regard, the search for more efficient and clean alternatives to achieve the chemical activation of molecules involved in chemical transformations has played a prominent role in recent years. The use of microwave or UV-Vis light irradiation, and mechanochemical activation is already widespread in many laboratories. Nevertheless, an additional condition to achieve "green" processes comes from the point of view of so-called atom economy. The removal of solvents from chemical reactions generally leads to cleaner, more efficient and more economical processes. This review presents several illustrative applications of the use of sustainable protocols in the synthesis of organic compounds under solvent-free reaction conditions.
Collapse
Affiliation(s)
- Claudia Gabriela Avila-Ortiz
- Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, 07360 Ciudad de México, Mexico
| | - Eusebio Juaristi
- Departamento de Química, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, 07360 Ciudad de México, Mexico
- El Colegio Nacional, Donceles 104, Centro Histórico, 06020 Ciudad de México, Mexico
| |
Collapse
|
11
|
Schramm S, Al‐Handawi MB, Karothu DP, Kurlevskaya A, Commins P, Mitani Y, Wu C, Ohmiya Y, Naumov P. Mechanically Assisted Bioluminescence with Natural Luciferase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Stefan Schramm
- New York University Abu Dhabi POB 129188 Abu Dhabi United Arab Emirates
| | | | | | | | - Patrick Commins
- New York University Abu Dhabi POB 129188 Abu Dhabi United Arab Emirates
| | - Yasuo Mitani
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST) 2-17-2-1 Tsukisamu-higashi, Toyohira-ku Sapporo 062-8517 Japan
| | - Chun Wu
- Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka Ikeda 563-8577 Japan
| | - Yoshihiro Ohmiya
- DAILAB, Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka Ikeda 563-8577 Japan
| | - Panče Naumov
- New York University Abu Dhabi POB 129188 Abu Dhabi United Arab Emirates
- Radcliffe Institute for Advanced StudyHarvard University 10 Garden St Cambridge MA 02138 USA
| |
Collapse
|
12
|
Schramm S, Al‐Handawi MB, Karothu DP, Kurlevskaya A, Commins P, Mitani Y, Wu C, Ohmiya Y, Naumov P. Mechanically Assisted Bioluminescence with Natural Luciferase. Angew Chem Int Ed Engl 2020; 59:16485-16489. [DOI: 10.1002/anie.202007440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Stefan Schramm
- New York University Abu Dhabi POB 129188 Abu Dhabi United Arab Emirates
| | | | | | | | - Patrick Commins
- New York University Abu Dhabi POB 129188 Abu Dhabi United Arab Emirates
| | - Yasuo Mitani
- Bioproduction Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 2-17-2-1 Tsukisamu-higashi, Toyohira-ku Sapporo 062-8517 Japan
| | - Chun Wu
- Biomedical Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka Ikeda 563-8577 Japan
| | - Yoshihiro Ohmiya
- DAILAB, Biomedical Research Institute National Institute of Advanced Industrial Science and Technology (AIST) 1-8-31 Midorigaoka Ikeda 563-8577 Japan
| | - Panče Naumov
- New York University Abu Dhabi POB 129188 Abu Dhabi United Arab Emirates
- Radcliffe Institute for Advanced Study Harvard University 10 Garden St Cambridge MA 02138 USA
| |
Collapse
|
13
|
Dayaker G, Tan D, Biggins N, Shelam A, Do JL, Katsenis AD, Friščić T. Catalytic Room-Temperature C-N Coupling of Amides and Isocyanates by Using Mechanochemistry. CHEMSUSCHEM 2020; 13:2966-2972. [PMID: 32222112 DOI: 10.1002/cssc.201902576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/13/2020] [Indexed: 06/10/2023]
Abstract
A mechanochemical route is developed for room-temperature and solvent-free derivatization of different types of amides into carbamoyl isatins (up to 96 % conversion or yield), benzamides (up to 81 % yield), and imides (up to 92 % yield). In solution, this copper-catalyzed coupling either does not take place or requires high temperatures at which it may also be competing with alternative thermal reactivity, highlighting the beneficial role of mechanochemistry for this reaction. Such behavior resembles the previously investigated coupling with sulfonamide substrates, suggesting that this type of C-N coupling is an example of a mechanochemically favored reaction, for which mechanochemistry appears to be a favored environment over solution.
Collapse
Affiliation(s)
- Gandrath Dayaker
- Department of Chemistry, McGill University, FRQNT Centre for Green Chemistry and Catalysis (CCVC/CGCC), 801 Sherbrooke St. W., H31 0B8, Montreal, Canada
| | - Davin Tan
- Department of Chemistry, McGill University, FRQNT Centre for Green Chemistry and Catalysis (CCVC/CGCC), 801 Sherbrooke St. W., H31 0B8, Montreal, Canada
| | - Naomi Biggins
- Department of Chemistry, McGill University, FRQNT Centre for Green Chemistry and Catalysis (CCVC/CGCC), 801 Sherbrooke St. W., H31 0B8, Montreal, Canada
| | - Asha Shelam
- Department of Chemistry, McGill University, FRQNT Centre for Green Chemistry and Catalysis (CCVC/CGCC), 801 Sherbrooke St. W., H31 0B8, Montreal, Canada
| | - Jean-Louis Do
- Department of Chemistry, McGill University, FRQNT Centre for Green Chemistry and Catalysis (CCVC/CGCC), 801 Sherbrooke St. W., H31 0B8, Montreal, Canada
| | - Athanassios D Katsenis
- Department of Chemistry, McGill University, FRQNT Centre for Green Chemistry and Catalysis (CCVC/CGCC), 801 Sherbrooke St. W., H31 0B8, Montreal, Canada
| | - Tomislav Friščić
- Department of Chemistry, McGill University, FRQNT Centre for Green Chemistry and Catalysis (CCVC/CGCC), 801 Sherbrooke St. W., H31 0B8, Montreal, Canada
| |
Collapse
|
14
|
Pérez‐Venegas M, Rodríguez‐Treviño AM, Juaristi E. Dual Mechanoenzymatic Kinetic Resolution of (±)‐Ketorolac. ChemCatChem 2020. [DOI: 10.1002/cctc.201902292] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mario Pérez‐Venegas
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
| | | | - Eusebio Juaristi
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
- El Colegio Nacional Donceles 104 Ciudad de México 06020 Mexico
| |
Collapse
|
15
|
Jiang J, Li J. Mechanically Induced
N
‐arylation of Amines with Diaryliodonium Salts. ChemistrySelect 2020. [DOI: 10.1002/slct.201904188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Jiang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Jianjun Li
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
16
|
Hammerer F, Ostadjoo S, Friščić T, Auclair K. Towards Controlling the Reactivity of Enzymes in Mechanochemistry: Inert Surfaces Protect β-Glucosidase Activity During Ball Milling. CHEMSUSCHEM 2020; 13:106-110. [PMID: 31593363 DOI: 10.1002/cssc.201902752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 06/10/2023]
Abstract
The activity of β-glucosidases-the enzymes responsible for the final step in the enzymatic conversion of cellulose to glucose-can be maintained and manipulated under mechanochemical conditions in the absence of bulk solvent, either through an unexpected stabilization effect of inert surfaces, or by altering the enzymatic equilibrium. The reported results illustrate unique aspects of mechanoenzymatic reactions that are not observable in conventional aqueous solutions. They also represent the first reported strategies to enhance activity and favor either direction of the reaction under mechanochemical conditions.
Collapse
Affiliation(s)
- Fabien Hammerer
- Chemistry Department, McGill University, 801 Sherbrooke St. W., Montreal (QC), H3A 0B8, Canada
| | - Shaghayegh Ostadjoo
- Chemistry Department, McGill University, 801 Sherbrooke St. W., Montreal (QC), H3A 0B8, Canada
| | - Tomislav Friščić
- Chemistry Department, McGill University, 801 Sherbrooke St. W., Montreal (QC), H3A 0B8, Canada
| | - Karine Auclair
- Chemistry Department, McGill University, 801 Sherbrooke St. W., Montreal (QC), H3A 0B8, Canada
| |
Collapse
|
17
|
Kaabel S, Friščić T, Auclair K. Mechanoenzymatic Transformations in the Absence of Bulk Water: A More Natural Way of Using Enzymes. Chembiochem 2019; 21:742-758. [PMID: 31651073 DOI: 10.1002/cbic.201900567] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Sandra Kaabel
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Tomislav Friščić
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Karine Auclair
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| |
Collapse
|
18
|
Pérez‐Venegas M, Tellez‐Cruz MM, Solorza‐Feria O, López‐Munguía A, Castillo E, Juaristi E. Thermal and Mechanical Stability of Immobilized
Candida antarctica
Lipase B: an Approximation to Mechanochemical Energetics in Enzyme Catalysis. ChemCatChem 2019. [DOI: 10.1002/cctc.201901714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mario Pérez‐Venegas
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
| | - Miriam M. Tellez‐Cruz
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
| | - Omar Solorza‐Feria
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
| | - Agustín López‐Munguía
- Department of cellular engineering and biocatalysisUniversidad Nacional Autónoma de México Av. Universidad 2001 Col. Chamilpa 62210 Cuernavaca Mexico
| | - Edmundo Castillo
- Department of cellular engineering and biocatalysisUniversidad Nacional Autónoma de México Av. Universidad 2001 Col. Chamilpa 62210 Cuernavaca Mexico
| | - Eusebio Juaristi
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
- El Colegio Nacional Luis Gonzáles Obregón 23 Ciudad de México 06020 Mexico
| |
Collapse
|
19
|
Efficient Enzymatic Hydrolysis of Biomass Hemicellulose in the Absence of Bulk Water. Molecules 2019; 24:molecules24234206. [PMID: 31756935 PMCID: PMC6930478 DOI: 10.3390/molecules24234206] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 01/20/2023] Open
Abstract
Current enzymatic methods for hemicellulosic biomass depolymerization are solution-based, typically require a harsh chemical pre-treatment of the material and large volumes of water, yet lack in efficiency. In our study, xylanase (E.C. 3.2.1.8) from Thermomyces lanuginosus is used to hydrolyze xylans from different sources. We report an innovative enzymatic process which avoids the use of bulk aqueous, organic or inorganic solvent, and enables hydrolysis of hemicellulose directly from chemically untreated biomass, to low-weight, soluble oligoxylosaccharides in >70% yields.
Collapse
|
20
|
Affiliation(s)
- Tomislav Friščić
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
- Laboratoire SPCMIB, CNRS UMR 5068 Université de Toulouse UPS 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Cristina Mottillo
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Hatem M. Titi
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| |
Collapse
|
21
|
Friščić T, Mottillo C, Titi HM. Mechanochemistry for Synthesis. Angew Chem Int Ed Engl 2019; 59:1018-1029. [DOI: 10.1002/anie.201906755] [Citation(s) in RCA: 392] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Tomislav Friščić
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
- Laboratoire SPCMIB, CNRS UMR 5068 Université de Toulouse UPS 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Cristina Mottillo
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Hatem M. Titi
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| |
Collapse
|
22
|
Therien JPD, Hammerer F, Friščić T, Auclair K. Mechanoenzymatic Breakdown of Chitinous Material to N-Acetylglucosamine: The Benefits of a Solventless Environment. CHEMSUSCHEM 2019; 12:3481-3490. [PMID: 31211476 DOI: 10.1002/cssc.201901310] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Chitin is not only the most abundant nitrogen-containing biopolymer on the planet, but also a renewable feedstock that is often treated as a waste. Current chemical methods to break down chitin typically employ harsh conditions, large volumes of solvent, and generate a mixture of products. Although enzymatic methods have been reported, they require a harsh chemical pretreatment of the chitinous substrate and rely on dilute solution conditions that are remote from the natural environment of microbial chitinase enzymes, which typically consists of surfaces exposed to air and moisture. We report an innovative and efficient mechanoenzymatic method to hydrolyze chitin to the N-acetylglucosamine monomer by using chitinases under the recently developed reactive aging (RAging) methodology, based on repeating cycles of brief ball-milling followed by aging, in the absence of bulk solvent. Our results demonstrate that the activity of chitinases increases several times by switching from traditional solution-based conditions of enzymatic catalysis to solventless RAging, which operates on moist solid substrates. Importantly, RAging is also highly efficient for the production of N-acetylglucosamine directly from shrimp and crab shell biomass without any other processing except for a gentle wash with aqueous acetic acid.
Collapse
Affiliation(s)
- J P Daniel Therien
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Fabien Hammerer
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| |
Collapse
|
23
|
|
24
|
Pérez-Venegas M, Juaristi E. Mechanoenzymatic resolution of racemic chiral amines, a green technique for the synthesis of pharmaceutical building blocks. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Bolm C, Hernández JG. From Synthesis of Amino Acids and Peptides to Enzymatic Catalysis: A Bottom-Up Approach in Mechanochemistry. CHEMSUSCHEM 2018; 11:1410-1420. [PMID: 29436773 DOI: 10.1002/cssc.201800113] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Recently, chemical reactions induced or facilitated by mechanical energy have gained recognition in diverse areas of chemical synthesis. In particular, mechanosyntheses of amino acids and short peptides, along with their applications in catalysis, have revealed the high degree of stability of peptide bonds in environments of harsh mechanical stress. These observations quickly led to the recent interest in developing mechanochemical enzymatic reactions. Experimentally, manual grinding, ball-milling techniques, and twin-screw extrusion technology have proven valuable to convey mechanical forces into a chemical synthesis. These practices have enabled the establishment of more sustainable alternatives for chemical synthesis by reducing the use of organic solvents and waste production, thereby having a direct impact on the E-factor of the chemical process. In this Minireview, the series of events that allowed the development of mechanochemical enzymatic reactions are described from a bottom-up perspective.
Collapse
Affiliation(s)
- Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - José G Hernández
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
26
|
Eguaogie O, Vyle JS, Conlon PF, Gîlea MA, Liang Y. Mechanochemistry of nucleosides, nucleotides and related materials. Beilstein J Org Chem 2018; 14:955-970. [PMID: 29765475 PMCID: PMC5942386 DOI: 10.3762/bjoc.14.81] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/20/2018] [Indexed: 12/24/2022] Open
Abstract
The application of mechanical force to induce the formation and cleavage of covalent bonds is a rapidly developing field within organic chemistry which has particular value in reducing or eliminating solvent usage, enhancing reaction rates and also in enabling the preparation of products which are otherwise inaccessible under solution-phase conditions. Mechanochemistry has also found recent attention in materials chemistry and API formulation during which rearrangement of non-covalent interactions give rise to functional products. However, this has been known to nucleic acids science almost since its inception in the late nineteenth century when Miescher exploited grinding to facilitate disaggregation of DNA from tightly bound proteins through selective denaturation of the latter. Despite the wide application of ball milling to amino acid chemistry, there have been limited reports of mechanochemical transformations involving nucleoside or nucleotide substrates on preparative scales. A survey of these reactions is provided, the majority of which have used a mixer ball mill and display an almost universal requirement for liquid to be present within the grinding vessel. Mechanochemistry of charged nucleotide substrates, in particular, provides considerable benefits both in terms of efficiency (reducing total processing times from weeks to hours) and by minimising exposure to aqueous conditions, access to previously elusive materials. In the absence of large quantities of solvent and heating, side-reactions can be reduced or eliminated. The central contribution of mechanochemistry (and specifically, ball milling) to the isolation of biologically active materials derived from nuclei by grinding will also be outlined. Finally non-covalent associative processes involving nucleic acids and related materials using mechanochemistry will be described: specifically, solid solutions, cocrystals, polymorph transitions, carbon nanotube dissolution and inclusion complex formation.
Collapse
Affiliation(s)
- Olga Eguaogie
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - Joseph S Vyle
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - Patrick F Conlon
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - Manuela A Gîlea
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - Yipei Liang
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| |
Collapse
|
27
|
Mantovani AC, Hernández JG, Bolm C. Synthesis of 3-Iodobenzofurans by Electrophilic Cyclization under Solventless Conditions in a Ball Mill. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anderson C. Mantovani
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - José G. Hernández
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| | - Carsten Bolm
- Institute of Organic Chemistry; RWTH Aachen University; Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
28
|
Hammerer F, Loots L, Do JL, Therien JPD, Nickels CW, Friščić T, Auclair K. Solvent-Free Enzyme Activity: Quick, High-Yielding Mechanoenzymatic Hydrolysis of Cellulose into Glucose. Angew Chem Int Ed Engl 2018; 57:2621-2624. [PMID: 29342316 DOI: 10.1002/anie.201711643] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/16/2017] [Indexed: 12/15/2022]
Abstract
Mechanochemistry enables enzymatic cleavage of cellulose into glucose without bulk solvents, acids, other aggressive reagents, or substrate pre-treatment. This clean mechanoenzymatic process (coined RAging) is also directly applicable to biomass, avoids many limitations associated with the use of cellulases, and produces glucose concentrations greater than three times that obtained by conventional methods.
Collapse
Affiliation(s)
- Fabien Hammerer
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada
| | - Leigh Loots
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada
| | - Jean-Louis Do
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada
| | - J P Daniel Therien
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada
| | | | - Tomislav Friščić
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, Montreal, Quebec, H3A 0B8, Canada
| |
Collapse
|
29
|
Hammerer F, Loots L, Do JL, Therien JPD, Nickels CW, Friščić T, Auclair K. Solvent-Free Enzyme Activity: Quick, High-Yielding Mechanoenzymatic Hydrolysis of Cellulose into Glucose. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711643] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fabien Hammerer
- Department of Chemistry; McGill University; Montreal Quebec H3A 0B8 Canada
| | - Leigh Loots
- Department of Chemistry; McGill University; Montreal Quebec H3A 0B8 Canada
| | - Jean-Louis Do
- Department of Chemistry; McGill University; Montreal Quebec H3A 0B8 Canada
| | | | | | - Tomislav Friščić
- Department of Chemistry; McGill University; Montreal Quebec H3A 0B8 Canada
| | - Karine Auclair
- Department of Chemistry; McGill University; Montreal Quebec H3A 0B8 Canada
| |
Collapse
|