1
|
Ding S, Alexander E, Liang H, Kulchar RJ, Singh R, Herzog RW, Daniell H, Leong KW. Synthetic and Biogenic Materials for Oral Delivery of Biologics: From Bench to Bedside. Chem Rev 2025; 125:4009-4068. [PMID: 40168474 DOI: 10.1021/acs.chemrev.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
The development of nucleic acid and protein drugs for oral delivery has lagged behind their production for conventional nonoral routes. Over the past decade, the evolution of DNA- and RNA-based technologies combined with the innovation of state-of-the-art delivery vehicles for nucleic acids has brought rapid advancements to the biopharmaceutical field. Nucleic acid therapies have the potential to achieve long-lasting effects, or even cures, by inhibiting or editing genes, which is not possible with conventional small-molecule drugs. However, challenges and limitations must be addressed before these therapies can provide cures for chronic conditions and rare diseases, rather than only offering temporary relief. Nucleic acids and proteins face premature degradation in the acidic, enzyme-rich stomach environment and are rapidly cleared by the liver. To overcome these challenges, various delivery vehicles have been developed to transport therapeutic compounds to the intestines, where the active compounds are released and gut microbiota and mucosal immune system also play an important role. This review provides a comprehensive overview of the promises and pitfalls associated with the oral route of administration of biologics, current delivery systems, applications of orally delivered therapeutics, and the challenges and considerations for translation of nucleic acid and protein therapeutics into clinical practice.
Collapse
Affiliation(s)
- Suwan Ding
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Elena Alexander
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Huiyi Liang
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Rachel J Kulchar
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rahul Singh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| |
Collapse
|
2
|
Saha R, Kao WL, Malady B, Heng X, Chen IA. Effect of montmorillonite K10 clay on RNA structure and function. Biophys J 2024; 123:451-463. [PMID: 37924206 PMCID: PMC10912936 DOI: 10.1016/j.bpj.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 09/29/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
One of the earliest living systems was likely based on RNA ("the RNA world"). Mineral surfaces have been postulated to be an important environment for the prebiotic chemistry of RNA. In addition to adsorbing RNA and thus potentially reducing the chance of parasitic takeover through limited diffusion, minerals have been shown to promote a range of processes related to the emergence of life, including RNA polymerization, peptide bond formation, and self-assembly of vesicles. In addition, self-cleaving ribozymes have been shown to retain activity when adsorbed to the clay mineral montmorillonite. However, simulation studies suggest that adsorption to minerals is likely to interfere with RNA folding and, thus, function. To further evaluate the plausibility of a mineral-adsorbed RNA world, here we studied the effect of the synthetic clay montmorillonite K10 on the malachite green RNA aptamer, including binding of the clay to malachite green and RNA, as well as on the formation of secondary structures in model RNA and DNA oligonucleotides. We evaluated the fluorescence of the aptamer complex, adsorption to the mineral, melting curves, Förster resonance energy transfer interactions, and 1H-NMR signals to study the folding and functionality of these nucleic acids. Our results indicate that while some base pairings are unperturbed, the overall folding and binding of the malachite green aptamer are substantially disrupted by montmorillonite. These findings suggest that minerals would constrain the structures, and possibly the functions, available to an adsorbed RNA world.
Collapse
Affiliation(s)
- Ranajay Saha
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Santa Barbara, California
| | - Wei-Ling Kao
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Brandon Malady
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Santa Barbara, California.
| |
Collapse
|
3
|
Helmbrecht V, Weingart M, Klein F, Braun D, Orsi WD. White and green rust chimneys accumulate RNA in a ferruginous chemical garden. GEOBIOLOGY 2023; 21:758-769. [PMID: 37615250 DOI: 10.1111/gbi.12572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/17/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Mechanisms of nucleic acid accumulation were likely critical to life's emergence in the ferruginous oceans of the early Earth. How exactly prebiotic geological settings accumulated nucleic acids from dilute aqueous solutions, is poorly understood. As a possible solution to this concentration problem, we simulated the conditions of prebiotic low-temperature alkaline hydrothermal vents in co-precipitation experiments to investigate the potential of ferruginous chemical gardens to accumulate nucleic acids via sorption. The injection of an alkaline solution into an artificial ferruginous solution under anoxic conditions (O2 < 0.01% of present atmospheric levels) and at ambient temperatures, caused the precipitation of amakinite ("white rust"), which quickly converted to chloride-containing fougerite ("green rust"). RNA was only extractable from the ferruginous solution in the presence of a phosphate buffer, suggesting RNA in solution was bound to Fe2+ ions. During chimney formation, this iron-bound RNA rapidly accumulated in the white and green rust chimney structure from the surrounding ferruginous solution at the fastest rates in the initial white rust phase and correspondingly slower rates in the following green rust phase. This represents a new mechanism for nucleic acid accumulation in the ferruginous oceans of the early Earth, in addition to wet-dry cycles and may have helped to concentrate RNA in a dilute prebiotic ocean.
Collapse
Affiliation(s)
- Vanessa Helmbrecht
- Department for Geo- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Maximilian Weingart
- Systems Biophysics, Faculty of Physics, Ludwig-Maximilians-Universität, Munich, Germany
| | - Frieder Klein
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Dieter Braun
- Systems Biophysics, Faculty of Physics, Ludwig-Maximilians-Universität, Munich, Germany
| | - William D Orsi
- Department for Geo- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität, Munich, Germany
- GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
4
|
Riggi VS, Watson EB, Steele A, Rogers KL. Mineral-Mediated Oligoribonucleotide Condensation: Broadening the Scope of Prebiotic Possibilities on the Early Earth. Life (Basel) 2023; 13:1899. [PMID: 37763303 PMCID: PMC10532843 DOI: 10.3390/life13091899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The origin of life on earth requires the synthesis of protobiopolymers in realistic geologic environments along strictly abiotic pathways that rely on inorganic phases (such as minerals) instead of cellular machinery to promote condensation. One such class of polymer central to biochemistry is the polynucleotides, and oligomerization of activated ribonucleotides has been widely studied. Nonetheless, the range of laboratory conditions tested to date is limited and the impact of realistic early Earth conditions on condensation reactions remains unexplored. Here, we investigate the potential for a variety of minerals to enhance oligomerization using ribonucleotide monomers as one example to model condensation under plausible planetary conditions. The results show that several minerals differing in both structure and composition enhance oligomerization. Sulfide minerals yielded oligomers of comparable lengths to those formed in the presence of clays, with galena being the most effective, yielding oligonucleotides up to six bases long. Montmorillonite continues to excel beyond other clays. Chemical pretreatment of the clay was not required, though maximum oligomer lengths decreased from ~11 to 6 bases. These results demonstrate the diversity of mineral phases that can impact condensation reactions and highlight the need for greater consideration of environmental context when assessing prebiotic synthesis and the origin of life.
Collapse
Affiliation(s)
- Vincent S. Riggi
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (E.B.W.); (A.S.); (K.L.R.)
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - E. Bruce Watson
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (E.B.W.); (A.S.); (K.L.R.)
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Andrew Steele
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (E.B.W.); (A.S.); (K.L.R.)
- Earth and Planets Laboratory, Carnegie Institution for Science, 5251 Broad Branch Rd NW, Washington, DC 20015, USA
| | - Karyn L. Rogers
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (E.B.W.); (A.S.); (K.L.R.)
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
5
|
Dujardin A, Himbert S, Pudritz R, Rheinstädter MC. The Formation of RNA Pre-Polymers in the Presence of Different Prebiotic Mineral Surfaces Studied by Molecular Dynamics Simulations. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010112. [PMID: 36676060 PMCID: PMC9860743 DOI: 10.3390/life13010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023]
Abstract
We used all-atom Molecular Dynamics (MD) computer simulations to study the formation of pre-polymers between the four nucleotides in RNA (AMP, UMP, CMP, GMP) in the presence of different substrates that could have been present in a prebiotic environment. Pre-polymers are C3'-C5' hydrogen-bonded nucleotides that have been suggested to be the precursors of phosphodiester-bonded RNA polymers. We simulated wet-dry cycles by successively removing water molecules from the simulations, from ~60 to 3 water molecules per nucleotide. The nine substrates in this study include three clay minerals, one mica, one phosphate mineral, one silica, and two metal oxides. The substrates differ in their surface charge and ability to form hydrogen bonds with the nucleotides. From the MD simulations, we quantify the interactions between different nucleotides, and between nucleotides and substrates. For comparison, we included graphite as an inert substrate, which is not charged and cannot form hydrogen bonds. We also simulated the dehydration of a nucleotide-only system, which mimics the drying of small droplets. The number of hydrogen bonds between nucleotides and nucleotides and substrates was found to increase significantly when water molecules were removed from the systems. The largest number of C3'-C5' hydrogen bonds between nucleotides occurred in the graphite and nucleotide-only systems. While the surface of the substrates led to an organization and periodic arrangement of the nucleotides, none of the substrates was found to be a catalyst for pre-polymer formation, neither at full hydration, nor when dehydrated. While confinement and dehydration seem to be the main drivers for hydrogen bond formation, substrate interactions reduced the interactions between nucleotides in all cases. Our findings suggest that small supersaturated water droplets that could have been produced by geysers or springs on the primitive Earth may play an important role in non-enzymatic RNA polymerization.
Collapse
Affiliation(s)
- Alix Dujardin
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Ralph Pudritz
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
- Correspondence: ; Tel.: +1-(905)-525-9140-23134; Fax: +1-(905)-546-1252
| |
Collapse
|
6
|
Rodrigues F, Georgelin T, Rigaud B, Zhuang G, Fonseca MG, Valtchev V, Jaber M. Deadlocks of adenine ribonucleotide synthesis: evaluation of adsorption and condensation reactions in a zeolite micropore space. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00837h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report on adenine, d-ribose, and monophosphate adsorption/co-adsorption into the synthetic analog of the zeolite mineral mordenite followed by drying at 50 °C and thermal activation at 150 °C under an argon atmosphere.
Collapse
Affiliation(s)
- Francisco Rodrigues
- Sorbonne University, CNRS UMR 8220, Laboratoire d'Archéologie Moléculaire et Structurale, 4 place Jussieu, F-75005 Paris, France
- State University of Paraíba, UEPB, Department of Chemistry, Campina Grande, Paraíba, Brazil
| | - Thomas Georgelin
- Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45000 Orléans, France
| | - Baptiste Rigaud
- CNRS Institut des Matériaux de Paris Centre (FR2482), 4 place jussieu, 75005 Paris, France
| | - Guanzheng Zhuang
- Sorbonne University, CNRS UMR 8220, Laboratoire d'Archéologie Moléculaire et Structurale, 4 place Jussieu, F-75005 Paris, France
| | | | - Valentin Valtchev
- Normandy University, Laboratoire Catalyse & Spectrochimie, ENSICAEN, 6 bl Maréchal Juin, 14050 Caen, France
| | - Maguy Jaber
- Sorbonne University, CNRS UMR 8220, Laboratoire d'Archéologie Moléculaire et Structurale, 4 place Jussieu, F-75005 Paris, France
- Institut Universitaire de France, France
| |
Collapse
|
7
|
Abstract
B-DNA, the informational molecule for life on earth, appears to contain ratios structured around the irrational number 1.618…, often known as the “golden ratio”. This occurs in the ratio of the length:width of one turn of the helix; the ratio of the spacing of the two helices; and in the axial structure of the molecule which has ten-fold rotational symmetry. That this occurs in the information-carrying molecule for life is unexpected, and suggests the action of some process. What this process might be is unclear, but it is central to any understanding of the formation of DNA, and so life.
Collapse
|
8
|
Franco A, da Silva JAL. Boron in Prebiological Evolution. Angew Chem Int Ed Engl 2021; 60:10458-10468. [PMID: 32997879 DOI: 10.1002/anie.202010616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 01/02/2023]
Abstract
Boron(III), as borate (or boric acid), mediates the synthesis of ribose, ribonucleosides, and ribonucleotides. These reactions are carried out under moderate temperatures (typically 70-95 °C) with organic molecules (or their derivatives) detected in interstellar space and inorganic ions found in minerals on Earth (and could occur during early stages of prebiotic evolution). Research in this century suggests that borate was a relevant prebiological reagent, thus reinforcing the RNA world hypothesis as an explanation for the origin of life. Herein, these developments on prebiological chemistry related to boron species are reviewed.
Collapse
Affiliation(s)
- Ana Franco
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - José Armando L da Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| |
Collapse
|
9
|
Affiliation(s)
- Ana Franco
- Centro de Química Estrutural Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisbon Portugal
| | - José Armando L. Silva
- Centro de Química Estrutural Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisbon Portugal
| |
Collapse
|
10
|
Mizuuchi R, Ichihashi N. Primitive Compartmentalization for the Sustainable Replication of Genetic Molecules. Life (Basel) 2021; 11:life11030191. [PMID: 33670881 PMCID: PMC7997230 DOI: 10.3390/life11030191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 01/03/2023] Open
Abstract
Sustainable replication and evolution of genetic molecules such as RNA are likely requisites for the emergence of life; however, these processes are easily affected by the appearance of parasitic molecules that replicate by relying on the function of other molecules, while not contributing to their replication. A possible mechanism to repress parasite amplification is compartmentalization that segregates parasitic molecules and limits their access to functional genetic molecules. Although extent cells encapsulate genomes within lipid-based membranes, more primitive materials or simple geological processes could have provided compartmentalization on early Earth. In this review, we summarize the current understanding of the types and roles of primitive compartmentalization regarding sustainable replication of genetic molecules, especially from the perspective of the prevention of parasite replication. In addition, we also describe the ability of several environments to selectively accumulate longer genetic molecules, which could also have helped select functional genetic molecules rather than fast-replicating short parasitic molecules.
Collapse
Affiliation(s)
- Ryo Mizuuchi
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
- Correspondence: (R.M.); (N.I.)
| | - Norikazu Ichihashi
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Correspondence: (R.M.); (N.I.)
| |
Collapse
|
11
|
Benner SA, Bell EA, Biondi E, Brasser R, Carell T, Kim H, Mojzsis SJ, Omran A, Pasek MA, Trail D. When Did Life Likely Emerge on Earth in an RNA‐First Process? CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.201900035] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Steven A. Benner
- Foundation for Applied Molecular Evolution Alachua FL USA
- Firebird Biomolecular Sciences LLC Alachua FL USA
| | - Elizabeth A. Bell
- Department of Earth, Planetary, and Space SciencesUniversity of California Los Angeles USA
| | - Elisa Biondi
- Foundation for Applied Molecular Evolution Alachua FL USA
| | - Ramon Brasser
- Earth Life Science InstituteTokyo Institute of Technology Tokyo Japan
| | - Thomas Carell
- Fakultät für Chemie und PharmazieLudwig-Maximilians-Universität München Germany
| | | | - Stephen J. Mojzsis
- Department of Geological SciencesUniversity of Colorado Boulder CO USA
- Hungarian Academy of Sciences Budapest Hungary
| | - Arthur Omran
- School of GeosciencesUniversity of South Florida Tampa, FL USA
| | | | - Dustin Trail
- Department of Earth and Environmental SciencesUniversity of Rochester Rochester NY USA
| |
Collapse
|
12
|
Duval S, Baymann F, Schoepp-Cothenet B, Trolard F, Bourrié G, Grauby O, Branscomb E, Russell MJ, Nitschke W. Fougerite: the not so simple progenitor of the first cells. Interface Focus 2019; 9:20190063. [PMID: 31641434 DOI: 10.1098/rsfs.2019.0063] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
We here review the extraordinary mineralogical properties of green rusts and their naturally occurring form, fougerite, and discuss the pertinence of these properties within the alkaline hydrothermal vent (AHV) hypothesis for life's emergence. We put forward an extended version of the AHV scenario which enhances the conformity between extant life and its earliest progenitor by extensively making use of fougerite's mechanistic and catalytic particularities.
Collapse
Affiliation(s)
- Simon Duval
- Aix Marseille Université, CNRS, BIP (UMR 7281), Marseille, France
| | - Frauke Baymann
- Aix Marseille Université, CNRS, BIP (UMR 7281), Marseille, France
| | | | | | | | - Olivier Grauby
- Aix Marseille Université, CINaM (UMR 7325), Luminy, France
| | - Elbert Branscomb
- Carl R. Woese Institute for Genomic Biology, and Department of Physics, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
13
|
Mizuuchi R, Blokhuis A, Vincent L, Nghe P, Lehman N, Baum D. Mineral surfaces select for longer RNA molecules. Chem Commun (Camb) 2019; 55:2090-2093. [PMID: 30694272 PMCID: PMC6377063 DOI: 10.1039/c8cc10319d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report empirically and theoretically that multiple prebiotic minerals can selectively accumulate longer RNAs, with selectivity enhanced at higher temperatures. We further demonstrate that surfaces can be combined with a catalytic RNA to form longer RNA polymers, supporting the potential of minerals to develop genetic information on the early Earth.
Collapse
Affiliation(s)
- Ryo Mizuuchi
- Department of Chemistry, Portland State University, Portland, OR 97201, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Sand KK, Jelavić S. Mineral Facilitated Horizontal Gene Transfer: A New Principle for Evolution of Life? Front Microbiol 2018; 9:2217. [PMID: 30319562 PMCID: PMC6167411 DOI: 10.3389/fmicb.2018.02217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/30/2018] [Indexed: 11/22/2022] Open
Abstract
A number of studies have highlighted that adsorption to minerals increases DNA longevity in the environment. Such DNA-mineral associations can essentially serve as pools of genes that can be stored across time. Importantly, this DNA is available for incorporation into alien organisms through the process of horizontal gene transfer (HGT). Here we argue that minerals hold an unrecognized potential for successfully transferring genetic material across environments and timescales to distant organisms and hypothesize that this process has significantly influenced the evolution of life. Our hypothesis is illustrated in the context of the evolution of early microbial life and the oxygenation of the Earth's atmosphere and offers an explanation for observed outbursts of evolutionary events caused by HGT.
Collapse
Affiliation(s)
- Karina Krarup Sand
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, United Kingdom
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Stanislav Jelavić
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Yarus M. Eighty routes to a ribonucleotide world; dispersion and stringency in the decisive selection. RNA (NEW YORK, N.Y.) 2018; 24:1041-1055. [PMID: 29785967 PMCID: PMC6049501 DOI: 10.1261/rna.066761.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
We examine the initial emergence of genetics; that is, of an inherited chemical capability. The crucial actors are ribonucleotides, occasionally meeting in a prebiotic landscape. Previous work identified six influential variables during such random ribonucleotide pooling. Geochemical pools can be in periodic danger (e.g., from tides) or constant danger (e.g., from unfavorable weather). Such pools receive Gaussian nucleotide amounts sporadically, at random times, or get varying substrates simultaneously. Pools use cross-templated RNA synthesis (5'-5' product from 5'-3' template) or para-templated (5'-5' product from 5'-5' template) synthesis. Pools can undergo mild or strong selection, and be recently initiated (early) or late in age. Considering >80 combinations of these variables, selection calculations identify a superior route. Most likely, an early, sporadically fed, cross-templating pool in constant danger, receiving ≥1 mM nucleotides while under strong selection for a coenzyme-like product, will host selection of the first encoded biochemical functions. Predominantly templated products emerge from a critical event, the starting bloc selection, which exploits inevitable differences among early pools. Favorable selection has a simple rationale; it is increased by product dispersion (SD/mean), by selection intensity (mild or strong), or by combining these factors as stringency, reciprocal fraction of pools selected (1/sfsel). To summarize: chance utility, acting via a preference for disperse, templated coenzyme-like dinucleotides, uses stringent starting bloc selection to quickly establish majority encoded/genetic expression. Despite its computational origin, starting bloc selection is largely independent of specialized assumptions. This ribodinucleotide route to inheritance may also have facilitated 5'-3' chemical RNA replication.
Collapse
Affiliation(s)
- Michael Yarus
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309-0347, USA
| |
Collapse
|
16
|
Smith ER, Hewitson TD, Hanssen E, Holt SG. Biochemical transformation of calciprotein particles in uraemia. Bone 2018; 110:355-367. [PMID: 29499417 DOI: 10.1016/j.bone.2018.02.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/05/2018] [Accepted: 02/23/2018] [Indexed: 01/25/2023]
Abstract
Calciprotein particles (CPP) have emerged as nanoscale mediators of phosphate-induced toxicity in Chronic Kidney Disease (CKD). Uraemia favors ripening of the particle mineral content from the amorphous (CPP-I) to the crystalline state (CPP-II) but the pathophysiological significance of this transformation is uncertain. Clinical studies suggest an association between CPP ripening and inflammation, vascular dysfunction and mortality. Although ripening has been modelled in vitro, it is unknown whether particles synthesised in serum resemble their in vivo counterparts. Here we show that in vitro formation and ripening of CPP in uraemic serum is characterised by extensive physiochemical rearrangements involving the accretion of mineral, loss of surface charge and transformation of the mineral phase from a spherical arrangement of diffuse domains of amorphous calcium phosphate to densely-packed lamellar aggregates of crystalline hydroxyapatite. These physiochemical changes were paralleled by enrichment with small soluble apolipoproteins, complement factors and the binding of fatty acids. In comparison, endogenous CPP represent a highly heterogeneous mixture of particles with characteristics mostly intermediate to synthetic CPP-I and CPP-II, but are also uniquely enriched for carbonate-substituted apatite, DNA fragments, small RNA and microbe-derived components. Pathway analysis of protein enrichment predicted the activation of cell death and pro-inflammatory processes by endogenous CPP and synthetic CPP-II alike. This comprehensive characterisation validates the use of CPP-II generated in uraemic serum as in vitro equivalents of their endogenous counterparts and provides insight into the nature and pathological significance of CPP in CKD, which may act as vehicles for various bioactive ligands.
Collapse
Affiliation(s)
- Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine - Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia.
| | - Tim D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine - Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Eric Hanssen
- Melbourne Advanced Microscopy Facility and Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine - Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Pedreira-Segade U, Michot LJ, Daniel I. Effects of salinity on the adsorption of nucleotides onto phyllosilicates. Phys Chem Chem Phys 2018; 20:1938-1952. [PMID: 29297910 DOI: 10.1039/c7cp07004g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the context of the origin of life, phyllosilicate surfaces might favor the adsorption, concentration and reactivity of otherwise diluted prebiotic molecules. The primitive oceanic seafloor was certainly rich in Fe-Mg-rich phyllosilicates. The salinity of the primitive seawater remains largely unknown. Values ranging from 1 to 15 times modern salinity have been proposed and the salt composition of the primitive ocean also remains elusive although it may have played a role in the interactions between nucleotides and mineral surfaces. Therefore we studied the adsorption of 5'-monophosphate deoxyguanosine (dGMP) as a model nucleotide onto a Fe-rich swelling clay, i.e. nontronite, and an Al-rich phyllosilicate, i.e. pyrophyllite, for comparison. Experiments were carried out at atmospheric pressure, 25 °C and natural pH, with a series of salts NaCl, MgCl2, CaCl2, MgSO4, NaH2PO4 and LaCl3 in order to evaluate the effect of cations and anions on dGMP adsorption. The present study shows that nucleotides are adsorbed on both phyllosilicates via a ligand exchange mechanism. The phosphate group of the nucleotide is adsorbed on the lateral metal hydroxyls of the broken edges of phyllosilicates. The presence of divalent cations or molecular anions, such as phosphate or sulfate, tends to inhibit this interaction on mineral surfaces. However, in the presence of divalent cations, cationic bridging on the basal surfaces of the swelling clay also occurs and could induce a higher retention capacity of the swelling clays compared to non-swelling phyllosilicates in primitive and modern natural environments.
Collapse
Affiliation(s)
- Ulysse Pedreira-Segade
- Univ Lyon, Ens de Lyon, Université Lyon 1, CNRS, UMR 5276 LGL-TPE, F-69342, Lyon, France.
| | | | | |
Collapse
|