1
|
Dohi T, Elboray EE, Kikushima K, Morimoto K, Kita Y. Iodoarene Activation: Take a Leap Forward toward Green and Sustainable Transformations. Chem Rev 2025; 125:3440-3550. [PMID: 40053418 PMCID: PMC11951092 DOI: 10.1021/acs.chemrev.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
Constructing chemical bonds under green sustainable conditions has drawn attention from environmental and economic perspectives. The dissociation of (hetero)aryl-halide bonds is a crucial step of most arylations affording (hetero)arene derivatives. Herein, we summarize the (hetero)aryl halides activation enabling the direct (hetero)arylation of trapping reagents and construction of highly functionalized (hetero)arenes under benign conditions. The strategies for the activation of aryl iodides are classified into (a) hypervalent iodoarene activation followed by functionalization under thermal/photochemical conditions, (b) aryl-I bond dissociation in the presence of bases with/without organic catalysts and promoters, (c) photoinduced aryl-I bond dissociation in the presence/absence of organophotocatalysts, (d) electrochemical activation of aryl iodides by direct/indirect electrolysis mediated by organocatalysts and mediators acting as electron shuttles, and (e) electrophotochemical activation of aryl iodides mediated by redox-active organocatalysts. These activation modes result in aryl iodides exhibiting diverse reactivity as formal aryl cations/radicals/anions and aryne precursors. The coupling of these reactive intermediates with trapping reagents leads to the facile and selective formation of C-C and C-heteroatom bonds. These ecofriendly, inexpensive, and functional group-tolerant activation strategies offer green alternatives to transition metal-based catalysis.
Collapse
Affiliation(s)
- Toshifumi Dohi
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Elghareeb E. Elboray
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Department
of Chemistry, Faculty of Science, South
Valley University, Qena 83523, Egypt
| | - Kotaro Kikushima
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Koji Morimoto
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Yasuyuki Kita
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| |
Collapse
|
2
|
Miyamoto N, Kikushima K, Sasa H, Katagiri T, Takenaga N, Kita Y, Dohi T. Transition-metal-free dibenzoxazepinone synthesis by hypervalent iodine-mediated chemoselective arylocyclizations of N-functionalized salicylamides. Chem Commun (Camb) 2025; 61:1882-1885. [PMID: 39774484 DOI: 10.1039/d4cc05908e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
We have developed transition-metal-free synthetic methodologies for dibenzoxazepinones utilizing salicylamides as starting materials and employing two distinct types of successive hypervalent iodine-mediated arylocyclizations. This synthetic protocol encompasses selective phenol O-arylation of salicylamides with diaryliodonium salts, followed by electrophilic aromatic amination utilizing chemically or electronically generated hypervalent iodine reagents in the second stage of the process.
Collapse
Affiliation(s)
- Naoki Miyamoto
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
| | - Kotaro Kikushima
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
| | - Hirotaka Sasa
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
| | - Ten Katagiri
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
| | - Naoko Takenaga
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Yasuyuki Kita
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
| |
Collapse
|
3
|
Elboray EE, Bae T, Kikushima K, Takenaga N, Kita Y, Dohi T. Metal-Free Synthesis of Benzisoxazolones Utilizing ortho-Ester and ortho-Cyano-Functionalized Diaryliodonium Salts with Protected Hydroxylamines. J Org Chem 2024; 89:17518-17527. [PMID: 39523745 DOI: 10.1021/acs.joc.4c02242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Herein, we report the development of metal-free one/two-pot procedures for the synthesis of benzo[c]isoxazol-3(1H)-one (benzisoxazolone) heterocycles by designing diaryliodonium salts featuring ortho-ester or nitrile functional groups. These react smoothly with protected hydroxylamines under mild conditions to produce N-arylhydroxylamine intermediates, which readily cyclize to give benzisoxazolone derivatives under acidic conditions. This metal-free process maintains the weak N-O bond, tolerates a wide range of diaryliodonium salts and protected hydroxylamines with diverse functional/protecting groups, thereby overcoming the challenges associated with previous transformations. The protocol expands the reaction scope and broadens the chemical space of the fused isoxazolone backbones to include unprecedented five-membered heteroaryl-fused isoxazolones in high yields. This method is also applicable to gram-scale synthesis, and the resulting benzisoxazolones can be effectively derivatized at the N-position to afford valuable compounds.
Collapse
Affiliation(s)
- Elghareeb E Elboray
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Taeho Bae
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Kotaro Kikushima
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Naoko Takenaga
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Yasuyuki Kita
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| |
Collapse
|
4
|
Kikushima K, Tsuda T, Miyamoto N, Kita Y, Dohi T. Borate-mediated aryl polyfluoroalkoxylation under transition-metal-free conditions. Chem Commun (Camb) 2024; 60:10552-10555. [PMID: 39229779 DOI: 10.1039/d4cc04008b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
We describe the transition-metal-free coupling for polyfluoroalkoxy arenes using polyfluoroalkoxy borates, which serve as counterions to diaryliodonium salts and transferring mediators of polyfluoroalkoxy groups. This strategy demonstrates high functional group compatibility owing to the low nucleophilicity of the borate mediator, thus offering a practical approach for synthesizing diverse polyfluoroalkoxy arenes.
Collapse
Affiliation(s)
- Kotaro Kikushima
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
| | - Tomoka Tsuda
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
| | - Naoki Miyamoto
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
| | - Yasuyuki Kita
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
| |
Collapse
|
5
|
Miyamoto N, Koseki D, Sumida K, Elboray EE, Takenaga N, Kumar R, Dohi T. Auxiliary strategy for the general and practical synthesis of diaryliodonium(III) salts with diverse organocarboxylate counterions. Beilstein J Org Chem 2024; 20:1020-1028. [PMID: 38711591 PMCID: PMC11070968 DOI: 10.3762/bjoc.20.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
Diaryliodonium(III) salts are versatile reagents that exhibit a range of reactions, both in the presence and absence of metal catalysts. In this study, we developed efficient synthetic methods for the preparation of aryl(TMP)iodonium(III) carboxylates, by reaction of (diacetoxyiodo)arenes or iodosoarenes with 1,3,5-trimethoxybenzene in the presence of a diverse range of organocarboxylic acids. These reactions were conducted under mild conditions using the trimethoxyphenyl (TMP) group as an auxiliary, without the need for additives, excess reagents, or counterion exchange in further steps. These protocols are compatible with a wide range of substituents on (hetero)aryl iodine(III) compounds, including electron-rich, electron-poor, sterically congested, and acid-labile groups, as well as a broad range of aliphatic and aromatic carboxylic acids for the synthesis of diverse aryl(TMP)iodonium(III) carboxylates in high yields. This method allows for the hybridization of complex bioactive and fluorescent-labeled carboxylic acids with diaryliodonium(III) salts.
Collapse
Affiliation(s)
- Naoki Miyamoto
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga, 525-8577, Japan
| | - Daichi Koseki
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga, 525-8577, Japan
| | - Kohei Sumida
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga, 525-8577, Japan
| | - Elghareeb E Elboray
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga, 525-8577, Japan
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Naoko Takenaga
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Ravi Kumar
- Department of Chemistry, J. C. Bose University of Science & Technology, YMCA Faridabad, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga, 525-8577, Japan
| |
Collapse
|
6
|
Radzhabov AD, Soldatova NS, Ivanov DM, Yusubov MS, Kukushkin VY, Postnikov PS. Metal-free and atom-efficient protocol for diarylation of selenocyanate by diaryliodonium salts. Org Biomol Chem 2023; 21:6743-6749. [PMID: 37552120 DOI: 10.1039/d3ob00833a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
We developed an atom- and reaction mass efficient strategy for the preparation of diarylselenides using iodonium salts as reactants. The developed approach allows the obtaining of diarylselenides from the corresponding trimethoxyphenyl-substituted iodonium salts via a two-step one-pot reaction sequence. The proposed metal-free methodology is based on the involvement of both iodonium aryl groups for diarylation.
Collapse
Affiliation(s)
- Amirbek D Radzhabov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.
| | - Natalia S Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.
| | - Daniil M Ivanov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Mekhman S Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.
- Department of Solid State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic
| |
Collapse
|
7
|
Catalyst‐Free Visible Light Mediated Synthesis of Unsymmetrical Tertiary Arylphosphines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Kikushima K, Miyamoto N, Watanabe K, Koseki D, Kita Y, Dohi T. Ligand- and Counterion-Assisted Phenol O-Arylation with TMP-Iodonium(III) Acetates. Org Lett 2022; 24:1924-1928. [DOI: 10.1021/acs.orglett.2c00294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kotaro Kikushima
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Naoki Miyamoto
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Kazuma Watanabe
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Daichi Koseki
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Yasuyuki Kita
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| |
Collapse
|
9
|
Kikushima K, Elboray EE, Jimenez-Halla JOC, Solorio-Alvarado CR, Dohi T. Diaryliodonium(III) Salts in One-Pot Double Functionalization of C–IIII and ortho C–H Bonds. Org Biomol Chem 2022; 20:3231-3248. [DOI: 10.1039/d1ob02501e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since the 1950s, diaryliodonium(III) salts have been demonstrated to participate in various arylation reactions, forming aryl–heteroatom and aryl–carbon bonds. Incorporating the arylation step into sequential transformations would provide access to...
Collapse
|
10
|
Soldatova NS, Semenov AV, Geyl KK, Baykov SV, Shetnev AA, Konstantinova AS, Korsakov MM, Yusubov MS, Postnikov PS. Copper‐Catalyzed Selective N‐Arylation of Oxadiazolones by Diaryliodonium Salts. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Natalia S. Soldatova
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russian Federation
- Research School of Chemistry and Applied Biomedical Sciences Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Artem V. Semenov
- M.V. Lomonosov Institute of Fine Chemical Technologies MIREA – Russian Technological University 86 Vernadskogo Pr Moscow 119571 Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry 16/10 Miklukho-Maklaya St. Moscow 117997 Russian Federation
| | - Kirill K. Geyl
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| | - Sergey V. Baykov
- Institute of Chemistry Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| | - Anton A. Shetnev
- Pharmaceutical Technology Transfer Centre Yaroslavl State Pedagogical University named after K.D. Ushinsky 108 Respublikanskaya St. Yaroslavl 150000 Russian Federation
| | - Anna S. Konstantinova
- Russian State University named after A.N. Kosygin (Technology. Design. Art) 33 Sadovnicheskaya St. Moscow 117997 Russian Federation
| | - Mikhail M. Korsakov
- Russian State University named after A.N. Kosygin (Technology. Design. Art) 33 Sadovnicheskaya St. Moscow 117997 Russian Federation
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences Tomsk Polytechnic University Tomsk 634034 Russian Federation
| | - Pavel S. Postnikov
- Research School of Chemistry and Applied Biomedical Sciences Tomsk Polytechnic University Tomsk 634034 Russian Federation
- Department of Solid State Engineering Institute of Chemical Technology Prague 16628 Czech Republic
| |
Collapse
|
11
|
Nilova A, Metze B, Stuart DR. Aryl(TMP)iodonium Tosylate Reagents as a Strategic Entry Point to Diverse Aryl Intermediates: Selective Access to Arynes. Org Lett 2021; 23:4813-4817. [PMID: 34032454 DOI: 10.1021/acs.orglett.1c01534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arenes are broadly found motifs in societally important molecules. Access to diverse arene chemical space is critically important, and the ability to do so from common reagents is highly desirable. Aryl(TMP)iodonium tosylates provide one such access point to arene chemical space via diverse aryl intermediates. Here we demonstrate that controlling reaction pathways selectively leads to arynes with a broad scope of arenes and arynophiles (24 examples, 70% average yield) and efficient access to biologically active compounds.
Collapse
Affiliation(s)
- Aleksandra Nilova
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Bryan Metze
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - David R Stuart
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| |
Collapse
|
12
|
Abha Saikia R, Barman D, Dutta A, Jyoti Thakur A. N
1
‐ and
N
3
‐Arylations of Hydantoins Employing Diaryliodonium Salts
via
Copper(I) Catalysis at Room Temperature. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Raktim Abha Saikia
- Department of Chemical Sciences Tezpur University Napaam-784028 Assam India
| | - Dhiraj Barman
- Department of Chemical Sciences Tezpur University Napaam-784028 Assam India
- Department of Chemistry Shiv Nadar University Greater Noida-201314 Uttar Pradesh India
| | - Anurag Dutta
- Department of Chemical Sciences Tezpur University Napaam-784028 Assam India
| | - Ashim Jyoti Thakur
- Department of Chemical Sciences Tezpur University Napaam-784028 Assam India
| |
Collapse
|
13
|
Affiliation(s)
- Carlotta Raviola
- PhotoGreen Lab University of Pavia Viale Taramelli 10 27100 Pavia Italy
| | - Stefano Protti
- PhotoGreen Lab University of Pavia Viale Taramelli 10 27100 Pavia Italy
| |
Collapse
|
14
|
Neerbye Berntsen L, Nova A, Wragg DS, Sandtorv AH. Cu-catalyzed N-3-Arylation of Hydantoins Using Diaryliodonium Salts. Org Lett 2020; 22:2687-2691. [PMID: 32202123 PMCID: PMC7309330 DOI: 10.1021/acs.orglett.0c00642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A general Cu-catalyzed,
regioselective method for the N-3-arylation of hydantoins
is described. The protocol utilizes aryl(trimethoxyphenyl)iodonium
tosylate as the arylating agent in the presence of triethylamine and
a catalytic amount of a simple Cu-salt. The method is compatible with
structurally diverse hydantoins and operates well with neutral aryl
groups or aryl groups bearing weakly donating/withdrawing elements.
It is also applicable for the rapid diversification of pharmaceutically
relevant hydantoins.
Collapse
Affiliation(s)
- Linn Neerbye Berntsen
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Ainara Nova
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - David S Wragg
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Alexander H Sandtorv
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| |
Collapse
|
15
|
Gallagher RT, Basu S, Stuart DR. Trimethoxyphenyl (TMP) as a Useful Auxiliary for
in situ
Formation and Reaction of Aryl(TMP)iodonium Salts: Synthesis of Diaryl Ethers. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901187] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rory T. Gallagher
- Department of ChemistryPortland State University Portland Oregon 97201 United States
| | - Souradeep Basu
- Department of ChemistryPortland State University Portland Oregon 97201 United States
| | - David R. Stuart
- Department of ChemistryPortland State University Portland Oregon 97201 United States
| |
Collapse
|
16
|
Gallagher RT, Seidl TL, Bader J, Orella C, Vickery T, Stuart DR. Anion Metathesis of Diaryliodonium Tosylate Salts with a Solid-Phase Column Constructed from Readily Available Laboratory Consumables. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rory T. Gallagher
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Thomas L. Seidl
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Joshua Bader
- ExecuPharm, King of Prussia, Pennsylvania 19406, United States
| | - Charles Orella
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Thomas Vickery
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - David R. Stuart
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| |
Collapse
|
17
|
Koseki D, Aoto E, Shoji T, Watanabe K, In Y, Kita Y, Dohi T. Efficient N-arylation of azole compounds utilizing selective aryl-transfer TMP-iodonium(III) reagents. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Soldatova NS, Postnikov PS, Yusubov MS, Wirth T. Flow Synthesis of Iodonium Trifluoroacetates through Direct Oxidation of Iodoarenes by Oxone®. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900220] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Natalia S. Soldatova
- School of Chemistry; Cardiff University; Park Place, Main Building Cardiff CF10 3AT United Kingdom
- Research School of Chemistry and Applied Biomedical Sciences; Tomsk Polytechnic University; 634034 Tomsk Russian Federation
| | - Pavel S. Postnikov
- Research School of Chemistry and Applied Biomedical Sciences; Tomsk Polytechnic University; 634034 Tomsk Russian Federation
- Department of Solid State Engineering; Institute of Chemical Technology; 16628 Prague Czech Republic
| | - Mekhman S. Yusubov
- School of Chemistry; Cardiff University; Park Place, Main Building Cardiff CF10 3AT United Kingdom
- Research School of Chemistry and Applied Biomedical Sciences; Tomsk Polytechnic University; 634034 Tomsk Russian Federation
| | - Thomas Wirth
- School of Chemistry; Cardiff University; Park Place, Main Building Cardiff CF10 3AT United Kingdom
| |
Collapse
|
19
|
Kwon YD, Son J, Chun JH. Chemoselective Radiosyntheses of Electron-Rich [18F]Fluoroarenes from Aryl(2,4,6-trimethoxyphenyl)iodonium Tosylates. J Org Chem 2019; 84:3678-3686. [DOI: 10.1021/acs.joc.9b00019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Young-Do Kwon
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jeongmin Son
- Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System, Seoul 03722, Republic of Korea
| | - Joong-Hyun Chun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|