1
|
Wu X, He J, Hu R, Tang BZ. NaOH-Assisted Multicomponent Reaction and Polymerizations of Elemental Sulfur, Diisocyanides, and Diols to Access Functional Poly(O-thiocarbamate)s. Chem Asian J 2024; 19:e202401022. [PMID: 39377739 DOI: 10.1002/asia.202401022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Sulfur-containing polymers with unique structures and fascinating properties have attracted much attention recently, the efficient and economic synthetic approaches for various sulfur-containing polymers have rapidly developed. Herein, the multicomponent reaction of elemental sulfur, isocyanide, and alcohol was designed at mild condition in the presence of NaOH, and the corresponding NaOH-assisted multicomponent polymerization of elemental sulfur, diisocyanides, and diols were developed at room temperature or 40 °C in air, to produce poly(O-thiocarbamate)s with well-defined structures, high molecular weights (Mws up to 32 500 g/mol) and high yields (up to 99 %). The facilely available monomers, mild condition, and high efficiency of this MCP enabled scale-up synthesis of poly(O-thiocarbamate)s, and 7.33 g polymer was obtained in 98 % yield. These functional poly(O-thiocarbamate)s could enrich Au3+ from aqueous solution with high enrichment capacity (983 mg⋅Au3+/g) and high efficiency (>99.77 %) in 1 min, demonstrating superior gold enrichment performance and their potential industrial and economic values.
Collapse
Affiliation(s)
- Xiuying Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Junxia He
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen City, Guangdong, 518172, China
- AIE Institute, Guangzhou, 510530, China
| |
Collapse
|
2
|
Sun Q, Xu Y, Yang L, Zheng CL, Wang G, Wang HB, Fang Z, Wang CS, Guo K. Direct C-H Sulfuration: Synthesis of Disulfides, Dithiocarbamates, Xanthates, Thiocarbamates and Thiocarbonates. Chem Asian J 2024; 19:e202400124. [PMID: 38421239 DOI: 10.1002/asia.202400124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
In light of the important biological activities and widespread applications of organic disulfides, dithiocarbamates, xanthates, thiocarbamates and thiocarbonates, the continual persuit of efficient methods for their synthesis remains crucial. Traditionally, the preparation of such compounds heavily relied on intricate multi-step syntheses and the use of highly prefunctionalized starting materials. Over the past two decades, the direct sulfuration of C-H bonds has evolved into a straightforward, atom- and step-economical method for the preparation of organosulfur compounds. This review aims to provide an up-to-date discussion on direct C-H disulfuration, dithiocarbamation, xanthylation, thiocarbamation and thiocarbonation, with a special focus on describing scopes and mechanistic aspects. Moreover, the synthetic limitations and applications of some of these methodologies, along with the key unsolved challenges to be addressed in the future are also discussed. The majority of examples covered in this review are accomplished via metal-free, photochemical or electrochemical approaches, which are in alignment with the overraching objectives of green and sustainable chemistry. This comprehensive review aims to consolidate recent advancements, providing valuable insights into the dynamic landscape of efficient and sustainable synthetic strategies for these crucial classes of organosulfur compounds.
Collapse
Affiliation(s)
- Qiao Sun
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Yuan Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Liu Yang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chun-Ling Zheng
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Guowei Wang
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Hai-Bo Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Zheng Fang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chang-Sheng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Kai Guo
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| |
Collapse
|
3
|
Liu X, Cai TC, Zhu M, Liu Y, Xia J, Xie J, Wen L, Gui QW, Yin Y. S-alkyl Dithiocarbamates Synthesis through Electrochemical Multicomponent Reaction of Thiols, Hydrogen Sulfide, and Isocyanides. J Org Chem 2023; 88:12311-12318. [PMID: 37585499 DOI: 10.1021/acs.joc.3c01017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Dithiocarbamates synthesis is extremely important in plenty of biomedical and agrochemical applications, especially fungicide development, but remains a great challenge. In this work, we have successfully developed a multicomponent reaction protocol to convert H2S into S-alkyl dithiocarbamates under constant current conditions. No additional oxidants nor additional catalysts are required, and due to mild conditions, the reactions display a broad substrate scope, including varieties of thiols or disulfides.
Collapse
Affiliation(s)
- Xiaoying Liu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, PR China
| | - Tian-Cheng Cai
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, PR China
| | - Mengxue Zhu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, PR China
| | - Yuxuan Liu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, PR China
| | - Jingjing Xia
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, PR China
| | - Junyan Xie
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China
| | - Lixin Wen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Qing-Wen Gui
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, PR China
| | - Yulong Yin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China
| |
Collapse
|
4
|
P H, Hati S, Dey R. S-Alkylation of dithiocarbamates via a hydrogen borrowing reaction strategy using alcohols as alkylating agents. Org Biomol Chem 2023; 21:6360-6367. [PMID: 37489908 DOI: 10.1039/d3ob00958k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Herein, we report an operationally simple, environmentally benign and scalable approach towards the synthesis of S-benzyl/alkyl dithiocarbamates via a hydrogen borrowing reaction between alcohols and dithiocarbamate anions catalyzed using a hydroxyapatite-supported copper nano-catalyst. This strategy has a broad substrate scope and offers high yields of products using inexpensive and readily available alcohols as starting materials. The catalyst was prepared by easy and straightforward methods and analyzed by several analytical techniques, e.g., FESEM, HR-TEM, BET, XRD, EDS, and XPS, demonstrating the anchoring of Cu nanoparticles on hydroxyapatite in the zero oxidation state.
Collapse
Affiliation(s)
- Hima P
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, India.
| | - Spandan Hati
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, India.
| | - Raju Dey
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, India.
| |
Collapse
|
5
|
Bis(μ-iodo)-tetrakis(O-methyl N-phenylthiocarbamate)-tetraiodo-dibismuth. MOLBANK 2022. [DOI: 10.3390/m1381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to investigate the coordination chemistry of O-alkyl N-aryl thiocarbamate ligands, BiI3 was reacted with two equivalents of MeOC(=S)N(H)Ph in MeCN solution to afford the dinuclear title compound complexes [{I2Bi(μ2-I)2BiI2}{κ1-MeOC(=S)N(H)Ph}4] 1. Compound 1 was characterized by IR, UV and NMR spectroscopy, the formation of a dinuclear framework is ascertained by a single-crystal X-ray diffraction study performed at 100 K.
Collapse
|
6
|
Németh AG, Szabó R, Németh K, Keserű GM, Ábrányi-Balogh P. A stepwise one-pot synthesis of aliphatic thiols and their derivatives from acrylamides and sulfur. Org Biomol Chem 2022; 20:4361-4368. [PMID: 35575267 DOI: 10.1039/d2ob00512c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elemental sulfur enables the convenient formation of C-S bonds and the direct incoporation of S-S bonds. The reactivity of easily accessible electron deficient alkenes towards sulfur, however, is barely disclosed. Herein, we investigated the reactivity of acrylamides with sulfur and eventually developed a new pseudo-multicomponent reaction for the preparation of polysulfides. Sequential one-pot reduction led to diversely substituted thiols. Additional third stage one-pot modifications provided thioethers, unsymmetric disulfide and thioester.
Collapse
Affiliation(s)
- András Gy Németh
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| | - Renáta Szabó
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| | - Krisztina Németh
- MS Metabolomics Research Laboratory, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - György M Keserű
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| | - Péter Ábrányi-Balogh
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| |
Collapse
|
7
|
Kyriakou S, Trafalis DT, Deligiorgi MV, Franco R, Pappa A, Panayiotidis MI. Assessment of Methodological Pipelines for the Determination of Isothiocyanates Derived from Natural Sources. Antioxidants (Basel) 2022; 11:antiox11040642. [PMID: 35453327 PMCID: PMC9029005 DOI: 10.3390/antiox11040642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
Isothiocyanates are biologically active secondary metabolites liberated via enzymatic hydrolysis of their sulfur enriched precursors, glucosinolates, upon tissue plant disruption. The importance of this class of compounds lies in their capacity to induce anti-cancer, anti-microbial, anti-inflammatory, neuroprotective, and other bioactive properties. As such, their isolation from natural sources is of utmost importance. In this review article, an extensive examination of the various parameters (hydrolysis, extraction, and quantification) affecting the isolation of isothiocyanates from naturally-derived sources is presented. Overall, the effective isolation/extraction and quantification of isothiocyanate is strongly associated with their chemical and physicochemical properties, such as polarity-solubility as well as thermal and acidic stability. Furthermore, the successful activation of myrosinase appears to be a major factor affecting the conversion of glucosinolates into active isothiocyanates.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, 11527 Athens, Greece; (D.T.T.); (M.V.D.)
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Ayios Dometios, Nicosia 2371, Cyprus;
- Correspondence: ; Tel.: +357-22392626
| |
Collapse
|
8
|
Zhu X, He J, Yang Y, Zhou S, Wei Y, Wang S. Synthesis of rare-earth metal complexes with a morpholine-functionalized β-diketiminato ligand and their catalytic activities towards C–O and C–N bond formation. Dalton Trans 2022; 51:13227-13235. [DOI: 10.1039/d2dt02053j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unusual tridentate β-diketiminato rare-earth metal chlorides LRECl(µ-Cl)2Li(THF)2 (RE = Y (1a), Yb (1b), Lu (1c); L = MeC(NDipp)CHC(Me)N(CH2)2NC4H8O; Dipp = 2,6-iPr2C6H3) and the corresponding dialkyl complexes LRE(CH2SiMe3)2 (RE = Y...
Collapse
|
9
|
Abstract
Isothiocyanates (ITCs) are biologically active molecules found in several natural products and pharmaceutical ingredients. Moreover, due to their high and versatile reactivity, they are widely used as intermediates in organic synthesis. This review considers the best practices for the synthesis of ITCs using elemental sulfur, highlighting recent developments. First, we summarize the in situ generation of thiocarbonyl surrogates followed by their transformation in the presence of primary amines leading to ITCs. Second, carbenes and amines afford isocyanides, and the further reaction of this species with sulfur readily generates ITCs under thermal, catalytic or basic conditions. Additionally, we also reveal that in the catalyst-free reaction of isocyanides and sulfur, two—until this time overlooked and not investigated—different mechanistic pathways exist.
Collapse
|
10
|
Németh AG, Marlok B, Domján A, Gao Q, Han X, Keserű GM, Ábrányi‐Balogh P. Convenient Multicomponent One‐Pot Synthesis of 2‐Iminothiazolines and 2‐Aminothiazoles Using Elemental Sulfur Under Aqueous Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- András Gy. Németh
- Medicinal Chemistry Research Group Research Centre for Natural Sciences Magyar tudósok krt. 2 1117 Budapest Hungary
| | - Bence Marlok
- Medicinal Chemistry Research Group Research Centre for Natural Sciences Magyar tudósok krt. 2 1117 Budapest Hungary
| | - Attila Domján
- NMR Research Laboratory Research Centre for Natural Sciences Magyar tudósok krt. 2 1117 Budapest Hungary
| | - Qinghe Gao
- School of Pharmacy Xinxiang Medical University Xinxiang Henan 453003 P. R. China
| | - Xinya Han
- School of Chemistry and Chemical Engineering Anhui University of Technology Maanshan Anhui 243002 P. R. China
| | - György M. Keserű
- Medicinal Chemistry Research Group Research Centre for Natural Sciences Magyar tudósok krt. 2 1117 Budapest Hungary
| | - Péter Ábrányi‐Balogh
- Medicinal Chemistry Research Group Research Centre for Natural Sciences Magyar tudósok krt. 2 1117 Budapest Hungary
| |
Collapse
|
11
|
Zhang J, Zang Q, Yang F, Zhang H, Sun JZ, Tang BZ. Sulfur Conversion to Multifunctional Poly( O-thiocarbamate)s through Multicomponent Polymerizations of Sulfur, Diols, and Diisocyanides. J Am Chem Soc 2021; 143:3944-3950. [PMID: 33657807 DOI: 10.1021/jacs.1c00243] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sulfur, which is generated from the waste byproducts in the oil and gas refinery industry, is an abundant, cheap, stable, and readily available source in the world. However, the utilization of excessive amounts of sulfur is mostly limited, and developing novel methods for sulfur conversion is still a global concern. Here, we report a facile one-step conversion from elemental sulfur to functional poly(O-thiocarbamate)s through a multicomponent polymerization of sulfur, diols, and diisocyanides, which possesses a series of advantages such as mild condition (55 °C), short reaction time (1 h), 100% atom economy, and transition-metal free in the catalyst system. Seven poly(O-thiocarbamate)s are constructed with high yields (up to 95%), large molecular weight (up to 53100 of Mw), good solubility in organic solvents, and completely new polymer structures. The poly(O-thiocarbamate)s possess a high refractive index above 1.7 from 600 to 1700 nm by adjusting the sulfur content. By incorporating tetraphenylethene (TPE) moieties into the polymer structure, the poly(O-thiocarbamate)s can also be designed as fluorescent sensors to detect harmful metal cation of Hg2+ in a turn-on mode with high sensitivity (LOD = 32 nM) and excellent selectivity (over interference cations of Pb2+, Au3+, Ag+). Different from the previous reports, the exact coordination structure is first identified by single-crystal X-ray diffraction, which is revealed in a tetracoordination fashion (two sulfur and two chloride) using a model coordination compound.
Collapse
Affiliation(s)
- Jie Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiguang Zang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fulin Yang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, the Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
12
|
Nickisch R, Conen P, Gabrielsen SM, Meier MAR. A more sustainable isothiocyanate synthesis by amine catalyzed sulfurization of isocyanides with elemental sulfur. RSC Adv 2021; 11:3134-3142. [PMID: 35424261 PMCID: PMC8693870 DOI: 10.1039/d0ra10436a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/07/2021] [Indexed: 01/29/2023] Open
Abstract
Isothiocyanates (ITCs) are typically prepared using amines and highly toxic reagents such as thiophosgene, its derivatives, or CS2. In this work, an investigation of a multicomponent reaction (MCR) using isocyanides, elemental sulfur and amines revealed that isocyanides can be converted to isothiocyanates using sulfur and catalytic amounts of amine bases, especially DBU (down to 2 mol%). This new catalytic reaction was optimized in terms of sustainability, especially considering benign solvents such as Cyrene™ or γ-butyrolactone (GBL) under moderate heating (40 °C). Purification by column chromatography was further optimized to generate less waste by maintaining high purity of the product. Thus, E-factors as low as 0.989 were achieved and the versatility of this straightforward procedure was shown by converting 20 different isocyanides under catalytic conditions, while obtaining moderate to high yields (34-95%).
Collapse
Affiliation(s)
- R Nickisch
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT) Straße am Forum 7 76131 Karlsruhe Germany http://www.meier-michael.com
| | - P Conen
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT) Straße am Forum 7 76131 Karlsruhe Germany http://www.meier-michael.com
| | - S M Gabrielsen
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT) Straße am Forum 7 76131 Karlsruhe Germany http://www.meier-michael.com
| | - M A R Meier
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT) Straße am Forum 7 76131 Karlsruhe Germany http://www.meier-michael.com
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT) Straße am Forum 7 76131 Karlsruhe Germany
| |
Collapse
|
13
|
Németh AG, Szabó R, Domján A, Keserű GM, Ábrányi‐Balogh P. Chromatography-Free Multicomponent Synthesis of Thioureas Enabled by Aqueous Solution of Elemental Sulfur. ChemistryOpen 2021; 10:16-27. [PMID: 33377316 PMCID: PMC7780808 DOI: 10.1002/open.202000250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
The development of a new three-component chromatography-free reaction of isocyanides, amines and elemental sulfur allowed us the straightforward synthesis of thioureas in water. Considering a large pool of organic and inorganic bases, we first optimized the preparation of aqueous polysulfide solution from elemental sulfur. Using polysulfide solution, we were able to omit the otherwise mandatory chromatography, and to isolate the crystalline products directly from the reaction mixture by a simple filtration, retaining the sulfur in the solution phase. A wide range of thioureas synthesized in this way confirmed the reasonable substrate and functional group tolerance of our protocol.
Collapse
Affiliation(s)
- András Gy. Németh
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - Renáta Szabó
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - Attila Domján
- NMR Research LaboratoryResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - György M. Keserű
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| | - Péter Ábrányi‐Balogh
- Medicinal Chemistry Research GroupResearch Centre for Natural SciencesMagyar tudósok krt. 21117BudapestHungary
| |
Collapse
|
14
|
Dutta S, Saha A. Iodine mediated direct coupling of benzylic alcohols with dithiocarbamate anions: An easy access of S-benzyl dithiocarbamate esters under neat reaction condition. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|