1
|
Datta A, Ritu, Kumar S, Chorol S, Mukhopadhyay P, Jain N. Oxidative Organic Transformations Photocatalyzed by NDI in Visible Light. Org Lett 2024; 26:7357-7362. [PMID: 39186013 DOI: 10.1021/acs.orglett.4c02558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
In this work, we report the synthesis and photocatalytic properties of N,N-bis(n-hexyl)-2-bromo-6-(n-hexylamino)-1,4,5,8-naphthalenetetracarboxylic diimide photocatalyst, NDI-PC, in visible light. In the presence of air or oxidant, NDI-PC efficiently enables multiple photooxygenations of isoquinolines, thiocyanation of phenylimidazopyridines, functionalization of quinolinones by allowing regioselective installation of an SCN, SeCN, SPh, SePh, Cl, Br, or I group at the C-3 position, and isomerization of alkenes. Mechanistic investigations suggest an oxidative photoredox process for oxygenation and C-H functionalization, while isomerization is believed to proceed through a photosensitization pathway.
Collapse
Affiliation(s)
- Anirban Datta
- Department of Chemistry, Indian Institution of Technology Delhi, Delhi-110016, India
| | - Ritu
- Department of Chemistry, Indian Institution of Technology Delhi, Delhi-110016, India
| | - Sharvan Kumar
- Department of Chemistry, Indian Institution of Technology Delhi, Delhi-110016, India
| | - Sonam Chorol
- School of Physical Sciences, Jawaharlal Nehru University, Delhi-110067, India
| | - Pritam Mukhopadhyay
- School of Physical Sciences, Jawaharlal Nehru University, Delhi-110067, India
| | - Nidhi Jain
- Department of Chemistry, Indian Institution of Technology Delhi, Delhi-110016, India
| |
Collapse
|
2
|
Bhusanur DI, More KS, Al Kobaisi M, Singh PK, Bhosale SV, Bhosale SV. Synthesis, Photophysical Properties and Self-Assembly of a Tetraphenylethylene-Naphthalene Diimide Donor-Acceptor Molecule. Chem Asian J 2024:e202301046. [PMID: 38180124 DOI: 10.1002/asia.202301046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/06/2024]
Abstract
The development of new π-conjugated molecular structures with controlled self-assembly and distinct photophysical properties is crucial for advancing applications in optoelectronics and biomaterials. This study introduces the synthesis and detailed self-assembly analysis of tetraphenylethylene (TPE) functionalized naphthalene diimide (NDI), a novel donor-acceptor molecular structure referred to as TPE-NDI. The investigation specifically focuses on elucidating the self-assembly behavior of TPE-NDI in mixed solvents of varying polarities, namely chloroform: methylcyclohexane (CHCl3 : MCH) and chloroform: methanol (CHCl3 : MeOH). Employing a several analytical methodologies, including UV-Vis absorption and fluorescence emission spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS), these self-assembled systems have been comprehensively examined. The results reveal that TPE-NDI manifests as distinct particles in CHCl3 : MCH (fMCH =90 %), while transitioning to flower-like assemblies in CHCl3 : MeOH (fMeOH =90 %). This finding underscores the critical role of solvent polarity in dictating the morphological characteristics of TPE-NDI self-assembled aggregates. Furthermore, the study proposes a molecular packing mechanism, based on SEM data, offering significant insights into the design and development of functional supramolecular systems. Such advancements in understanding the molecular self-assembly new π-conjugated molecular structures are anticipated to pave the way for novel applications in material science and nanotechnology.
Collapse
Affiliation(s)
- Dnyaneshwar I Bhusanur
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, 500 007, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), 201 002, Ghaziabad, Uttar Pradesh, India
| | - Kerba S More
- Department School of Chemical Sciences, Goa University, 403 206, Taleigao Plateau, Goa, India
| | - Mohammad Al Kobaisi
- School of Science, RMIT University, GPO Box 2476, 3001, Melbourne, VIC, Australia
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, 400 085, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, 400 094, Mumbai, India
| | - Sidhanath V Bhosale
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, 500 007, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), 201 002, Ghaziabad, Uttar Pradesh, India
| | - Sheshanath V Bhosale
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kadaganchi, 585 367, Kalaburagi, Karnataka, India
| |
Collapse
|
3
|
Yang Y, Doettinger F, Kleeberg C, Frey W, Karnahl M, Tschierlei S. How the Way a Naphthalimide Unit is Implemented Affects the Photophysical and -catalytic Properties of Cu(I) Photosensitizers. Front Chem 2022; 10:936863. [PMID: 35783217 PMCID: PMC9247301 DOI: 10.3389/fchem.2022.936863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Driven by the great potential of solar energy conversion this study comprises the evaluation and comparison of two different design approaches for the improvement of copper based photosensitizers. In particular, the distinction between the effects of a covalently linked and a directly fused naphthalimide unit was assessed. For this purpose, the two heteroleptic Cu(I) complexes CuNIphen (NIphen = 5-(1,8-naphthalimide)-1,10-phenanthroline) and Cubiipo (biipo = 16H-benzo-[4′,5′]-isoquinolino-[2′,1′,:1,2]-imidazo-[4,5-f]-[1,10]-phenanthroline-16-one) were prepared and compared with the novel unsubstituted reference compound Cuphen (phen = 1,10-phenanthroline). Beside a comprehensive structural characterization, including two-dimensional nuclear magnetic resonance spectroscopy and X-ray analysis, a combination of electrochemistry, steady-state and time-resolved spectroscopy was used to determine the electrochemical and photophysical properties in detail. The nature of the excited states was further examined by (time-dependent) density functional theory (TD-DFT) calculations. It was found that CuNIphen exhibits a greatly enhanced absorption in the visible and a strong dependency of the excited state lifetimes on the chosen solvent. For example, the lifetime of CuNIphen extends from 0.37 µs in CH2Cl2 to 19.24 µs in MeCN, while it decreases from 128.39 to 2.6 µs in Cubiipo. Furthermore, CuNIphen has an exceptional photostability, allowing for an efficient and repetitive production of singlet oxygen with quantum yields of about 32%.
Collapse
Affiliation(s)
- Yingya Yang
- TU Braunschweig, Institute of Physical and Theoretical Chemistry, Department of Energy Conversion, Braunschweig, Germany
| | - Florian Doettinger
- TU Braunschweig, Institute of Physical and Theoretical Chemistry, Department of Energy Conversion, Braunschweig, Germany
| | - Christian Kleeberg
- TU Braunschweig, Institute of Inorganic and Analytical Chemistry, Braunschweig, Germany
| | - Wolfgang Frey
- University of Stuttgart, Institute of Organic Chemistry, Stuttgart, Germany
| | - Michael Karnahl
- TU Braunschweig, Institute of Physical and Theoretical Chemistry, Department of Energy Conversion, Braunschweig, Germany
- *Correspondence: Michael Karnahl, ; Stefanie Tschierlei,
| | - Stefanie Tschierlei
- TU Braunschweig, Institute of Physical and Theoretical Chemistry, Department of Energy Conversion, Braunschweig, Germany
- *Correspondence: Michael Karnahl, ; Stefanie Tschierlei,
| |
Collapse
|
4
|
Bhosale SV, Al Kobaisi M, Jadhav RW, Morajkar PP, Jones LA, George S. Naphthalene diimides: perspectives and promise. Chem Soc Rev 2021; 50:9845-9998. [PMID: 34308940 DOI: 10.1039/d0cs00239a] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we describe the developments in the field of naphthalene diimides (NDIs) from 2016 to the presentday. NDIs are shown to be an increasingly interesting class of molecules due to their electronic properties, large electron deficient aromatic cores and tendency to self-assemble into functional structures. Almost all NDIs possess high electron affinity, good charge carrier mobility, and excellent thermal and oxidative stability, making them promising candidates for applications in organic electronics, photovoltaic devices, and flexible displays. NDIs have also been extensively studied due to their potential real-world uses across a wide variety of applications including supramolecular chemistry, sensing, host-guest complexes for molecular switching devices, such as catenanes and rotaxanes, ion-channels, catalysis, and medicine and as non-fullerene accepters in solar cells. In recent years, NDI research with respect to supramolecular assemblies and mechanoluminescent properties has also gained considerable traction. Thus, this review will assist a wide range of readers and researchers including chemists, physicists, biologists, medicinal chemists and materials scientists in understanding the scope for development and applicability of NDI dyes in their respective fields through a discussion of the main properties of NDI derivatives and of the status of emerging applications.
Collapse
Affiliation(s)
- Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Mohammad Al Kobaisi
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Ratan W Jadhav
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Lathe A Jones
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Subi George
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur PO, Bangalore-560064, India
| |
Collapse
|
5
|
Shybeka I, Aster A, Cheng Y, Sakai N, Frontera A, Vauthey E, Matile S. Naphthalenediimides with Cyclic Oligochalcogenides in Their Core. Chemistry 2020; 26:14059-14063. [PMID: 33006168 DOI: 10.1002/chem.202003550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/18/2020] [Indexed: 01/04/2023]
Abstract
Naphthalenediimides (NDIs) are privileged scaffolds par excellence, of use in functional systems from catalysts to ion channels, photosystems, sensors, ordered matter in all forms, tubes, knots, stacks, sheets, vesicles, and colored over the full visible range. Despite this extensively explored chemical space, there is still room to discover core-substituted NDIs with fundamentally new properties: NDIs with cyclic trisulfides (i.e., trisulfanes) in their core absorb at 668 nm, emit at 801 nm, and contract into disulfides (i.e., dithietes) upon irradiation at <475 nm. Intramolecular 1,5-chalcogen bonds account for record redshifts with trisulfides, ring-tension mediated chalcogen-bond-mediated cleavage for blueshifts to 492 nm upon ring contraction. Cyclic oligochalcogenides (COCs) in the NDI core open faster than strained dithiolanes as in asparagusic acid and are much better retained on thiol exchange affinity columns. This makes COC-NDIs attractive not only within the existing multifunctionality, particularly artificial photosystems, but also for thiol-mediated cellular uptake.
Collapse
Affiliation(s)
- Inga Shybeka
- School of Chemistry and Biochemistry, University of Geneva, Geneva, Switzerland
| | - Alexander Aster
- School of Chemistry and Biochemistry, University of Geneva, Geneva, Switzerland
| | - Yangyang Cheng
- School of Chemistry and Biochemistry, University of Geneva, Geneva, Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry, University of Geneva, Geneva, Switzerland
| | - Antonio Frontera
- Department de Química, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Eric Vauthey
- School of Chemistry and Biochemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Pham AT, Matile S. Peptide Stapling with Anion-π Catalysts. Chem Asian J 2020; 15:1562-1566. [PMID: 32311232 DOI: 10.1002/asia.202000309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/01/2020] [Indexed: 12/12/2022]
Abstract
We report design, synthesis and evaluation of a series of naphthalenediimides (NDIs) that are bridged with short peptides. Reminiscent of peptide stapling technologies, the macrocycles are conveniently accessible by a chromogenic nucleophilic aromatic substitution of two bromides in the NDI core with two thiols from cysteine sidechains. The dimension of core-bridged NDIs matches that of one turn of an α helix. NDI-stapled peptides exist as two, often separable atropisomers. Introduction of tertiary amine bases in amino-acid sidechains above the π-acidic NDI surface affords operational anion-π catalysts. According to an enolate chemistry benchmark reaction, anion-π catalysis next to peptides occurs with record chemoselectivity but weak enantioselectivity. Catalytic activity drops with increasing distance of the amine base to the NDI surface, looser homocysteine bridges, mismatched, shortened and elongated α-helix turns, and acyclic peptide controls. Elongation of isolated turns into short α helices significantly increases activity. This increase is consistent with remote control of anion-π catalysis from the α-helix macrodipole.
Collapse
Affiliation(s)
- Anh-Tuan Pham
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|