1
|
Liu Q, Gele J, Zhao K, Zhang S, Gu W, Zhao Z, Li X. TCCA/RSeSeR-Mediated Selenoalkoxy of Allenamides via a Radical Process: Synthesis of Selanyl-allylic N,O-Aminals. J Org Chem 2024; 89:15529-15541. [PMID: 39422135 DOI: 10.1021/acs.joc.4c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
An efficient TCCA (trichloroisocyanuric acid)/RSeSeR-mediated selenoalkoxy of allenamides for the construction of selanyl-allylic N,OA-aminal derivatives was developed. The reaction exhibits good functional group tolerance and high efficiency, affording the products in good to excellent yields. Mechanistic investigations indicated that a selanyl-allylic radical intermediate was first formed via the RSe radical added to the central carbon of allenamides, which subsequently furnished highly stable selanyl-allylic carbocation intermediate by abstraction of an electron by the chlorine radical. Moreover, this is the first report of using selenium reagent (RSeCl) to activate allenamides via a radical process.
Collapse
Affiliation(s)
- Qingsong Liu
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Jiri Gele
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Kun Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Shuting Zhang
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Wen Gu
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Zhigang Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Xiaoxiao Li
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| |
Collapse
|
2
|
Huang M, Deng L, Lao T, Zhang Z, Su Z, Yu Y, Cao H. Dehydrogenation Coupling and [3 + 2] Cycloaddition of Indolizines with Allenes in the Presence of Piezoelectric Materials under Ball Milling Conditions. J Org Chem 2024; 89:9733-9743. [PMID: 38959385 DOI: 10.1021/acs.joc.3c02404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
A wide range of indolizines with allenes proceeded smoothly under mechanochemical-induced conditions via [3 + 2] annulation process, affording various substituted pyrrolo[2,1,5-cd]indolizines with good yield. The reaction efficiency was greatly improved by using a piezoelectric material as the charge transfer catalyst. The photophysical properties of the resulting pyrrolo[2,1,5-cd]indolizine was characterized.
Collapse
Affiliation(s)
- Mingzhou Huang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Lichan Deng
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Tianfeng Lao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Ziwu Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Zhengquan Su
- Guangdong Engineering Research Centre of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Centre of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Yu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| |
Collapse
|
3
|
Quintavalla A, Carboni D, Brusa A, Lombardo M. Selective Hydrofunctionalization of N-Allenyl Derivatives with Heteronucleophiles Catalyzed by Brønsted Acids. J Org Chem 2024; 89:2320-2342. [PMID: 38298114 DOI: 10.1021/acs.joc.3c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
In this study, we present a novel and environmentally sustainable protocol for the γ-hydrofunctionalization of N-allenyl compounds using various heteronucleophiles catalyzed solely by simple Brønsted acids. The method displays remarkable attributes, highlighting its sustainability, efficiency, regio- and stereoselectivity, as well as its versatile applicability to diverse heteroatom-containing enamides. Notably, our approach eliminates the need for metal catalysts and toxic solvents, representing a significant advancement in greener chemistry practices. We demonstrate the broad scope of our protocol by successfully scaling up reactions to gram-scale syntheses, underscoring its robustness for potential industrial implementation. The resulting γ-heterosubstituted enamides offer new possibilities for further synthetic transformations, yielding highly functionalized compounds with diverse applications. Mechanistic investigations reveal the pivotal role of CSA as a catalyst, enabling alcohol addition via a covalent activation mode.
Collapse
Affiliation(s)
- Arianna Quintavalla
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum-University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Davide Carboni
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum-University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Alessandro Brusa
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum-University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Marco Lombardo
- Department of Chemistry "G. Ciamician", Alma Mater Studiorum-University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| |
Collapse
|
4
|
Liu Y, Wang Z, Li R, Yao Y, Shi Z, Sun Q, Deng G. Recent Progress in Free Radical Transformations of Allenamides. Curr Org Synth 2024; 21:889-902. [PMID: 39044703 DOI: 10.2174/0115701794269961231027054854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 07/25/2024]
Abstract
Allenamides are special allenes, and the unique reactivity, selectivity (both stereoselective and regionally selective) and stability of allenamides have been widely studied. In this review, the development of the free radical transformation of allenamides over the last few years will be summarized. This review discusses in detail in three parts: intermolecular radical addition to C- X (X = N, S, O, Se) bonds, metal salt mediated cyclization of allenamides, and photocatalytic cyclization of allenamides. In addition, reasonable details of the mechanisms are provided for the vast majority of these transformations.
Collapse
Affiliation(s)
- Yongchun Liu
- College of Energy Chemicals and Environment, Sichuan Vocational and Technical College, Suining 629200, People's Republic of China
| | - Zimin Wang
- College of Energy Chemicals and Environment, Sichuan Vocational and Technical College, Suining 629200, People's Republic of China
| | - Rui Li
- College of Energy Chemicals and Environment, Sichuan Vocational and Technical College, Suining 629200, People's Republic of China
| | - Yinhai Yao
- College of Energy Chemicals and Environment, Sichuan Vocational and Technical College, Suining 629200, People's Republic of China
| | - Zhichuan Shi
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Qin Sun
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, People's Republic of China
| | - Guowei Deng
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, People's Republic of China
| |
Collapse
|
5
|
Zhao K, Liu Q, Cheng S, Zhao Z, Li X. PhI(OAc) 2-Mediated Regioselective Hydrothiolation of Allenamides with Thiophenol via a Radical Process: Synthesis of Vinyl Sulfides. J Org Chem 2023; 88:15626-15638. [PMID: 37885139 DOI: 10.1021/acs.joc.3c01605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
An efficient PhI(OAc)2-mediated regioselective hydrothiolation of allenamides with thiophenol via a radical process was developed to create a workable route to vinyl sulfides. The reaction exhibits a good functional group tolerance and high efficiency, affording the products in good to excellent yields. Mechanistic investigations indicated that the radical cascade proceeds through an allyl radical intermediate, which is formed via the addition of the PhS radical to the central carbon of allenamides. Moreover, the reaction was also efficient with selenophenol, providing the corresponding product, vinyl selenide, in a 99% yield.
Collapse
Affiliation(s)
- Kun Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, P. R. China
| | - Qingsong Liu
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, P. R. China
| | - Song Cheng
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, P. R. China
| | - Zhigang Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, P. R. China
| | - Xiaoxiao Li
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
6
|
Tan X, Zhao K, Zhong X, Yang L, Dong Y, Wang T, Yu S, Li X, Zhao Z. Synthesis of 1,2-diselenides via potassium persulfate-mediated diselenation of allenamides with diselenides. Org Biomol Chem 2022; 20:6566-6570. [PMID: 35903979 DOI: 10.1039/d2ob00964a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient potassium persulfate-mediated radical addition of allenamides with diselenides was developed to create a workable route to 1,2-diselenide products. The reaction tolerates a wide spectrum of functional groups to deliver the products in good to excellent yields. Mechanistic investigations including a calculation study indicated that the radical cascade proceeds through a vinyl radical intermediate, which is formed via a selenium radical added to the terminal CC double bond of allenamides.
Collapse
Affiliation(s)
- Xiaoju Tan
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Kun Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Xuefang Zhong
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Lan Yang
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Yiming Dong
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Tianmi Wang
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Shengping Yu
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Xiaoxiao Li
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| | - Zhigang Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| |
Collapse
|
7
|
Huang M, Deng L, Lao T, Zhang Z, Su Z, Yu Y, Cao H. Mechanochemically Induced Dehydrogenation Coupling and [3+2] Cycloaddition of Indolizines with Allenes Using Piezoelectric Materials. J Org Chem 2022; 87:3265-3275. [PMID: 35080180 DOI: 10.1021/acs.joc.1c02940] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A wide range of indolizines with allenes proceeded smoothly under mechanochemically induced conditions via a [3+2] annulation process, affording various substituted pyrrolo[2,1,5-cd]indolizines in good yields. The reaction efficiency was greatly improved by using piezoelectric material as the charge transfer catalyst. The photophysical properties of the resulting pyrrolo[2,1,5-cd]indolizine were characterized.
Collapse
Affiliation(s)
- Mingzhou Huang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Lichan Deng
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Tianfeng Lao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Ziwu Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Zhengquan Su
- Guangdong Engineering Research Centre of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Centre of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Yu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| |
Collapse
|
8
|
Quintavalla A, Veronesi R, Speziali L, Martinelli A, Zaccheroni N, Mummolo L, Lombardo M. Allenamides Playing Domino: A Redox‐Neutral Photocatalytic Synthesis of Functionalized 2‐Aminofurans. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Arianna Quintavalla
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Ruben Veronesi
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Laura Speziali
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Ada Martinelli
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Nelsi Zaccheroni
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Liviana Mummolo
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| | - Marco Lombardo
- Alma Mater Studiorum – University of Bologna Department of Chemistry “G. Ciamician” Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
9
|
Pradhan TR, Paudel M, Harper JL, Cheong PHY, Park JK. Characterization and Utilization of the Elusive α,β-Unsaturated N-Tosyliminium: the Synthesis of Highly Functionalizable Skipped Halo Enynes. Org Lett 2021; 23:1427-1433. [PMID: 33538600 DOI: 10.1021/acs.orglett.1c00103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A formal haloalkynylation of allenamides has been described for the synthesis of highly stereo- and regioselective skipped halo enynes. Exclusive γ-regioselectivity is achieved through the intermediacy of a conjugated N-tosyliminium intermediate-direct evidence for the formation of which was validated by NMR and HRMS. Quantum mechanical computations reveal that the reactive intermediate geometry is key to controlling the 1,2- or 1,4-regioselectivity of alkyne interception. Divergent access to elusive unsaturated systems has also been reported.
Collapse
Affiliation(s)
- Tapas R Pradhan
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Mukti Paudel
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jordan L Harper
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jin Kyoon Park
- Department of Chemistry and Institution for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
10
|
Abstract
This review summarizes the visible light mediated strategies for the functionalization of allenes.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Anoop Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Anuj Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| |
Collapse
|