1
|
Vasu D, Do HT, Li H, Hardy CD, Poulos TL, Silverman RB. Truncated pyridinylbenzylamines: Potent, selective, and highly membrane permeable inhibitors of human neuronal nitric oxide synthase. Bioorg Med Chem 2025; 124:118193. [PMID: 40252563 DOI: 10.1016/j.bmc.2025.118193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/21/2025]
Abstract
Neuronal nitric oxide synthase (nNOS) is a promising target for addressing various neurological disorders and melanoma. Our discovery of a series of truncated pyridinylbenzylamines has yielded potent, selective, and membrane permeable inhibitors of human neuronal nitric oxide synthase. By implementing an efficient synthetic procedure using the Suzuki-Miyaura cross-coupling reaction, we were able to rapidly identify a potent inhibitor. This new inhibitor (18, 6-(2,3-difluoro-5-((methylamino)methyl)phenyl)-4-methylpyridin-2-amine dihydrochloride) exhibits excellent potency, with Ki values of 30 nM for human nNOS and 40 nM for rat nNOS. It also demonstrates high isoform selectivity, showing an 821-fold preference for human nNOS over human endothelial NOS (eNOS) and a 75-fold selectivity over human inducible NOS (iNOS). Additionally, inhibitor 18 displays high permeability (Pe = 10.7 × 10-6 cm s-1) in an artificial membrane permeability assay. The crystal structures of several NOS-inhibitor complexes provide valuable structural insights into the potency and selectivity of this series of novel inhibitors. A particularly notable finding is the unexpected role of a Cl- anion bound to heNOS, which contributes to the high isoform selectivity of these inhibitors and explains why heNOS binds Cl-, while hnNOS does not. This unique Cl- binding site could be important in future inhibitor design, opening new avenues for the development of more selective NOS inhibitors. Additionally, the presented crystal structures reveal the key factors required to maintain both high potency and selectivity in the simplified inhibitors discussed in this study. Abbreviations: NO, nitric oxide; nNOS, neuronal nitric oxide synthase; iNOS, inducible nitric oxide synthase; eNOS, endothelial nitric oxide synthase; rnNOS, rat neuronal nitric oxide synthase; hnNOS, human neuronal nitric oxide synthase; hiNOS, human inducible nitric oxide synthase; heNOS, human endothelial nitric oxide synthase; l-Arg, l-arginine; NADPH, reduced nicotinamide adenine dinucleotide phosphate; CaM, calmodulin; H4B, (6R)-5,6,7,8-tetrahydrobiopterin; FAD, flavin adenine dinucleotide; FMN, Flavin mononucleotide, BBB, blood-brain barrier; CNS, central nervous system; PAMPA, parallel artificial membrane permeability assay; P-gp, P-glycoprotein; ER, efflux ratio; Pe, effective permeability; Papp, apparent permeability; Caco-2, cancer coli-2; TLC, thin layer chromatography; TBAF, tetra-n-butylammonium fluoride; TFA, trifluoroacetic acid.
Collapse
Affiliation(s)
- Dhananjayan Vasu
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, United States
| | - Ha T Do
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, United States
| | - Huiying Li
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, CA 92697-3900, United States
| | - Christine D Hardy
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, CA 92697-3900, United States
| | - Thomas L Poulos
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, CA 92697-3900, United States.
| | - Richard B Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, United States; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States.
| |
Collapse
|
2
|
Dai XL, Ran J, Rajeshkumar T, Xu Z, Liu S, Lv Z, Maron L, Chen YH. Highly Regioselective Propargylation/Allenylation of Organolanthanum Reagents with Aldehydes. Org Lett 2023; 25:3060-3065. [PMID: 37087762 DOI: 10.1021/acs.orglett.3c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The metal-mediated propargylation or allenylation of carbonyl compounds is well-adapted to the preparation of homopropargylic or allenylic alcohols, which are multifunctional intermediates in synthetic chemistry. However, the regioselectivity of reactions using propargyl or allenyl metal reagents is difficult to control, owing to the equilibrium between the two species. In our study, propargyl or allenyl organolanthanum reagents were prepared using trimethylsilylpropyne or prop-1-yn-1-ylbenzene substrates. The treatment of the organolanthanum reagents with aldehydes yielded the regioselective products, respectively. This study provides a better understanding of structural specificity and the special chemoselectivity of rare earth metal reagents.
Collapse
Affiliation(s)
- Xue-Lin Dai
- Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Jingdi Ran
- Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Zhengping Xu
- Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Shanshan Liu
- Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Zongchao Lv
- Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Yi-Hung Chen
- Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| |
Collapse
|
3
|
Abonia R, Insuasty D, Laali KK. Recent Advances in the Synthesis of Propargyl Derivatives, and Their Application as Synthetic Intermediates and Building Blocks. Molecules 2023; 28:molecules28083379. [PMID: 37110613 PMCID: PMC10146578 DOI: 10.3390/molecules28083379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The propargyl group is a highly versatile moiety whose introduction into small-molecule building blocks opens up new synthetic pathways for further elaboration. The last decade has witnessed remarkable progress in both the synthesis of propargylation agents and their application in the synthesis and functionalization of more elaborate/complex building blocks and intermediates. The goal of this review is to highlight these exciting advances and to underscore their impact.
Collapse
Affiliation(s)
- Rodrigo Abonia
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, Cali A.A. 25360, Colombia
| | - Daniel Insuasty
- Grupo de Investigación en Química y Biología, Departamento de Química y Biología, Universidad del Norte, Barranquilla 081007, Atlántico, Colombia
| | - Kenneth K Laali
- Department of Chemistry, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| |
Collapse
|
4
|
Labadie N, Ramos Marchena JM, Medrán NS, Pellegrinet SC. Allenylboronic Acid Pinacol Ester: A Selective Partner for [4 + 2] Cycloadditions. Org Lett 2021; 23:5081-5085. [PMID: 34151574 DOI: 10.1021/acs.orglett.1c01609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have studied the reaction of allenylboronic acid pinacol ester with cyclopentadiene with experimental and computational methods. The reaction occurred efficiently with complete Diels-Alder periselectivity and regioselectivity at the proximal double bond. The concerted mechanism for the observed transformation was computed to be favored over competitive addition to the distal double bond, [3,3]-sigmatropic rearrangements, and stepwise radical mechanism. This unprecedented Diels-Alder reaction enables the construction of synthetically versatile boron-substituted cycloadducts.
Collapse
Affiliation(s)
- Natalia Labadie
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Juan M Ramos Marchena
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Noelia S Medrán
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Silvina C Pellegrinet
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| |
Collapse
|