1
|
Wang XR, Lin WX, Lu YL, Kuck D, Xu WR. pH-Responsive supramolecular vesicles for imaging-guided drug delivery: Harnessing aggregation-induced emission. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240664. [PMID: 39323557 PMCID: PMC11421929 DOI: 10.1098/rsos.240664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 09/27/2024]
Abstract
The water-soluble tribenzotriquinacene-based hexacarboxylic acid ammonium salt, TBTQ-C 6 , acts as the host component (H) forming host-guest complexes with tetraphenylethylene (TPE)-functionalized monotopic and tetratopic quaternary ammonium derivatives, G1 and G2, to yield supra-amphiphiles. These supra-amphiphiles self-assemble to form pH-responsive fluorescent vesicles, which have allowed us to capitalize on the aggregation-induced emission (AIE) effect for imaging-guided drug delivery systems. These systems exhibit efficient drug loading and pH-responsive delivery capabilities. Upon encapsulation of the anticancer drug doxorubicin (DOX), both the TPE and DOX chromophores undergo dual-fluorescence deactivation due to the energy transfer relay (ETR) effect. Under acidic conditions, the release of DOX interrupts the ETR effect, resulting in the fluorescence recovery of TPE fluorogens and DOX, allowing for real-time visual monitoring of the drug release process. Cytotoxicity experiments confirmed the low toxicity of the unloaded vectors to normal cells, while the DOX-loaded vectors were found to significantly enhance the anticancer activity of DOX against cancer cells in vitro. The AIE-featured supramolecular vesicles presented in this research hold great potential for imaging-guided drug delivery systems.
Collapse
Affiliation(s)
- Xin-Rui Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan University, Haikou 570228, People's Republic of China
| | - Wei-Xiu Lin
- School of Chemistry and Chemical Engineering, Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan University, Haikou 570228, People's Republic of China
| | - Yi-Long Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan University, Haikou 570228, People's Republic of China
| | - Dietmar Kuck
- Department of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Bielefeld 33615, Germany
| | - Wen-Rong Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry, Hainan University, Haikou 570228, People's Republic of China
| |
Collapse
|
2
|
Karmakar P, Finnegan TJ, Rostam DC, Taneja S, Uçar S, Hansen AL, Moore CE, Hadad CM, Pratumyot K, Parquette JR, Badjić JD. Molecular bowls for inclusion complexation of toxic anticancer drug methotrexate. Chem Sci 2024; 15:10155-10163. [PMID: 38966368 PMCID: PMC11220613 DOI: 10.1039/d3sc05627a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/13/2024] [Indexed: 07/06/2024] Open
Abstract
We describe the preparation and study of novel cavitands, molecular bowls 16+ and 26+, as good binders of the anticancer drug methotrexate (MTX). Molecular bowls are comprised of a curved tribenzotriquinacene (TBTQ) core conjugated to three macrocyclic pyridinium units at the top. The cavitands are easily accessible via two synthetic steps from hexabromo-tribenzotriquinacene in 25% yield. As amphiphilic molecules, bowls 16+ and 26+ self-associate in water by the nucleation-to-aggregation pathway (NMR). The bowls are preorganized, having a semi-rigid framework comprising a fixed bottom with a wobbling pyridinium rim (VT NMR and MD). Further studies, both experimental (NMR) and computational (DFT and MCMM), suggested that a folded MTX occupies the cavity of bowls wherein it forms π-π, C-H-π, and ion pairing intermolecular contacts but also undergoes desolvation to give stable binary complexes (μM) in water. Moreover, a computational protocol is introduced to identify docking pose(s) of MTX inside molecular bowls from NMR shielding data. Both molecular bowls have shown in vitro biocompatibility with liver and kidney cell lines (MTS assay). As bowl 26+ is the strongest binder of MTX reported to date, we envision it as an excellent candidate for further studies on the way toward developing an antidote capable of removing MTX from overdosed cancer patients.
Collapse
Affiliation(s)
- Pratik Karmakar
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
- Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi 126 Pracha Uthit Road, Bang Mod, Thung Khru Bangkok 10140 Thailand
| | - Tyler J Finnegan
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Darian C Rostam
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Sagarika Taneja
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Sefa Uçar
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
- Atatürk University, Faculty of Science, Department of Chemistry Erzurum 25240 Turkey
| | - Alexandar L Hansen
- Campus Chemical Instrumentation Center, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Kornkanya Pratumyot
- Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi 126 Pracha Uthit Road, Bang Mod, Thung Khru Bangkok 10140 Thailand
| | - Jon R Parquette
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| | - Jovica D Badjić
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Avenue Columbus Ohio 43210 USA
| |
Collapse
|
3
|
Liu SN, Ren QX, Ding YT, Cao XP, Shi ZF, Chow HF, Kuck D. A Molecular Cage Accessed by Threefold Click Reaction of a C3v-Symmetric Triazido-Functionalized Tribenzotriquinacene. J Org Chem 2024; 89:2127-2137. [PMID: 38270538 DOI: 10.1021/acs.joc.3c01349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The hitherto unknown hexakis(halomethyl)-functionalized tribenzotriquinacenes (TBTQs) 9 and 10 were synthesized from the key 4b,8b,12b-tribromo-TBTQ derivative 6 by an improved route in 67% overall yield. Extension of the bowl-shaped framework of 9 or 10 by threefold condensation with propargylamine or 2-azidoethylamine afforded the corresponding TBTQ-trialkyne 11 and TBTQ-triazide 12, respectively. While attempts to construct bis-TBTQ cages, including homodimerization of 11 and heterocoupling of 11 with 12, were unsuccessful, triazide 12 was found to undergo threefold [3 + 2]-cycloaddition with 3-ethynylaniline and phloroglucinol tripropargyl ether under click chemistry conditions. The latter reaction enabled facile capping of the TBTQ bowl to give the novel cage compound 5 in 22% yield.
Collapse
Affiliation(s)
- Shuai-Nan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qing-Xia Ren
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun-Tao Ding
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiao-Ping Cao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zi-Fa Shi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hak-Fun Chow
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT 999077, Hong Kong
| | - Dietmar Kuck
- Department of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
4
|
Hung TY, Kuck D, Chow HF. Donor-Acceptor Tribenzotriquinacene-Based Molecular Wizard Hats Bearing Three ortho-Benzoquinone Units. Chemistry 2022; 29:e202203749. [PMID: 36585931 DOI: 10.1002/chem.202203749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Two π-extended bay-bridged tribenzotriquinacenes ("TBTQ wizard hats") 12 and 16 bearing three mutually conjugated, alternating veratrole-type and ortho-benzoquinone units were synthesized. The electronic properties of these complementarily arranged, nonplanar push-pull systems are affected by the fusion with the rigid, C3 -symmetric TBTQ core to a different extent, as revealed by X-ray structural analysis, UV-vis spectroscopy and cyclovoltammetry. The combination of three quinone units within the original TBTQ core and three veratrole-type bay bridging units in 12 gives rise to a more efficiently π-conjugated chromophore, as reflected by the shallower shape of wizard hat and its absorption in the visible up to 750 nm in comparison to 16. Congener 12 contains an aromatic 18-π electron system in contrast to the cross-conjugated analog 16. X-ray structure analysis of the precursor dodecaether 15 revealed the formation of a cage-like supramolecular dimer, in which the peripheral dioxane-type ether groups interlace by twelve noncovalent C-H⋅⋅⋅⋅⋅O bonds.
Collapse
Affiliation(s)
- Tsz-Yu Hung
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Dietmar Kuck
- Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Hak-Fun Chow
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
6
|
Li MP, Yang N, Xu WR. Synthesis of a new water-soluble hexacarboxylated tribenzotriquinacene derivative and its competitive host-guest interaction for drug delivery. Beilstein J Org Chem 2022; 18:539-548. [PMID: 35615534 PMCID: PMC9112186 DOI: 10.3762/bjoc.18.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022] Open
Abstract
A new water-soluble hexacarboxylated tribenzotriquinacene derivative (TBTQ-CB6) was synthesized and used as a supramolecular drug carrier to load the model anticancer drugs dimethyl viologen (MV) and doxorubicin (DOX) via host-guest interactions. The drugs could be effectively released by spermine (SM), a molecule overexpressed in cancer cells, through host-guest competitive substitution since TBTQ-CB6 has a stronger binding affinity toward SM than MV and DOX. The host-guest interactions of the complexes of TBTQ-CB6 with MV, DOX and SM were investigated by NMR spectroscopy and fluorescence spectroscopy. The association stoichiometry of the complexes of TBTQ-CB6 with MV, DOX, and SM was found to be 1:1 with association constants of K a = (7.67 ± 0.34) × 104 M-1, K a = (6.81 ± 0.33) × 104 M-1, and K a = (5.09 ± 0.98) × 105 M-1, respectively. The competitive substitution process was visualized by NMR titration. This novel TBTQ-based host-guest drug delivery system may have potential use in supramolecular chemotherapy.
Collapse
Affiliation(s)
- Man-Ping Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Department of Chemistry, School of Science or School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Nan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Department of Chemistry, School of Science or School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Wen-Rong Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Department of Chemistry, School of Science or School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| |
Collapse
|
7
|
Seifert M, Barth D, Kuck D. Benzoannellated Fenestranes Bearing
para
‐Terphenyl Units. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Monika Seifert
- Department of Chemistry Bielefeld University 33615 Bielefeld Germany
| | - Dieter Barth
- Department of Chemistry Bielefeld University 33615 Bielefeld Germany
| | - Dietmar Kuck
- Department of Chemistry Bielefeld University 33615 Bielefeld Germany
| |
Collapse
|
8
|
Wang X, Li M, Xu W, Kuck D. Photo and pH Dual‐Responsive Supramolecular Vesicles Based on a Water‐Soluble Tribenzotriquinacene and an Azobenzene‐Containing Amphiphile in Water. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xin‐Rui Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry Department of Chemistry, School of Science Hainan University Haikou 570228 P. R. China
| | - Man‐Ping Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry Department of Chemistry, School of Science Hainan University Haikou 570228 P. R. China
| | - Wen‐Rong Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan Provincial Key Laboratory of Fine Chemistry Department of Chemistry, School of Science Hainan University Haikou 570228 P. R. China
| | - Dietmar Kuck
- Department of Chemistry and Center for Molecular Materials (CM2) Bielefeld University Bielefeld 33615 Germany
| |
Collapse
|