1
|
Wang YY, Fu TF, Hu X, Liu B, Teng MY, Huang GL, Zhang L. Metal-Free Visible-Light Excitation of TMSN 3 Enables [3 + 2] Cycloaddition of Arylidenecyclopropanes with Olefins. Org Lett 2025; 27:4095-4100. [PMID: 40226911 DOI: 10.1021/acs.orglett.5c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
A visible-light photoredox [3 + 2] cycloaddition reaction of arylidenecyclopropanes with olefins was developed, employing the readily available and commercially accessible TMSN3 as an efficient radical mediator. This method provides a convenient and efficient route to arylidenecyclopentanes from readily available starting materials, is metal-free, and features enhanced atom and step economy, excellent selectivity, extensive substrate versatility, favorable functional group compatibility, structural diversity, and mild reaction conditions, which further enable late-stage diversification. DFT calculations elucidated that this transformation entails sequential radical generation, radical addition, ring-opening, radical cyclization, and elimination steps.
Collapse
Affiliation(s)
- Ya-Yu Wang
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Ting-Feng Fu
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Xiao Hu
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Bo Liu
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Ming-Yu Teng
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Guo-Li Huang
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Lei Zhang
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
2
|
Song JY, Sun XY, Wang BL, Zhou SS, Song JX, Zhang BH, Wang XW. COAP-Pd Catalyzed Asymmetric Formal [3+2] Cycloaddition for Optically Active Multistereogenic Spiro Cyclopentane-Indandiones Bearing Cyclic N-Sulfonyl Ketimine Skeletons. Chem Asian J 2024; 19:e202400184. [PMID: 38628038 DOI: 10.1002/asia.202400184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Indexed: 05/21/2024]
Abstract
We reported a chiral oxamide-phosphine ligand (COAP-Ph)-Pd-catalyzed asymmetric [3+2] cycloaddition reaction between vinyl cyclopropane compounds derived from 1,3-indanedione and 2-vinylcyclopropane-1,1-dicarboxylates with cyclic sulfonyl 1-azadienes. The corresponding reactions provided a series of enantiomerically active spiro cyclopentane-indandione and cyclopentane structures bearing three consecutive stereogenic centers in good yields with good diastereo- and enantioselectivity. The COAP-Pd complex serves not only to promote generation of chiral π-allyl-palladium intermediates and induce the asymmetry of the reaction, but also depress the background reaction.
Collapse
Affiliation(s)
- Jia-Yu Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Xing-Yun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Bai-Lin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Sheng-Suo Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Jia-Xin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Bu-Hong Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Xing-Wang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| |
Collapse
|
3
|
Qatran Al-Khdhairawi AA, Yuan T, Van Hecke K, Winne JM. Dearomative (3 + 2) Cycloaddition of Indoles for the Stereoselective Assembly of Fully Functionalized Cyclopentanoids. Org Lett 2024; 26:4077-4081. [PMID: 38696160 DOI: 10.1021/acs.orglett.4c01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The gold(I)-catalyzed dearomative cyclopentannulation of various indoles with 2-ethynyl-1,3-dithiolane is reported. The method generates three new stereocenters with excellent control of relative stereochemistry and is tolerant of diverse functionalization and substitution patterns on the indoles. The obtained cyclopentane-fused indolines allow for interesting subsequent synthetic manipulations, giving rise to fully substituted cyclopentanes with control of the relative stereochemistry of all five stereocenters. The reported reaction illustrates and elucidates a mechanistic dichotomy underlying gold(I)-catalyzed reactions of 2-ethynyl-1,3-dithiolane.
Collapse
Affiliation(s)
| | - Tengrui Yuan
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
- Yunnan Precious Metals Lab Co., Ltd, Keji Road 988, Kunming, Yunnan 650106, China
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| |
Collapse
|
4
|
Ishihara J. Progress in Lewis-Acid-Templated Diels-Alder Reactions. Molecules 2024; 29:1187. [PMID: 38474699 DOI: 10.3390/molecules29051187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
The synthesis of natural products with complicated architectures often requires the use of segments with functional groups that can be structurally transformed with the desired stereogenic centers. Bicyclic 𝛾-lactones have great potential as a suitable segment for natural product synthesis. However, the stereoselective construction of such functionalized bicyclic 𝛾-lactones is not as straightforward as one might expect. The template-mediated Diels-Alder reaction is one of the most powerful and versatile methods for providing bicyclic 𝛾-lactones with high regioselectivity and stereoselectivity. In this reaction, the diene is linked to the dienophile by a temporary tether, allowing the reaction to proceed efficiently, yielding a product that can be used for natural product synthesis. This review describes some important instances of the template-mediated Diels-Alder reaction and its application to the synthesis of biologically active compounds.
Collapse
Affiliation(s)
- Jun Ishihara
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 853-8521, Japan
| |
Collapse
|
5
|
Dhandabani GK, Jeyakannu P, Shih CL, Abraham AM, Senadi GC, Wang JJ. A Regioselective [3 + 2] Cycloaddition of Alkynols and Ketones To Access Diverse 1,3-Dioxolane Scaffolds. J Org Chem 2024; 89:719-724. [PMID: 38149308 DOI: 10.1021/acs.joc.3c01820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
This study presents a stepwise exoselective [3 + 2] cycloaddition reaction of alkynols with ketones, leading to the synthesis of 4-methylene-1,3-dioxolane derivatives. Remarkably, without any Thorpe-Ingold induced effect, the cyclization reaction was demonstrated with complete regio- and chemoselectivity, which was solely promoted by cesium carbonate. A wide range of unactivated ketones are viable under these mild reaction conditions, and both primary and tertiary alkynols are compatible with these cyclization reactions. We have prepared a diverse array of highly dense exomethylene 1,3-dioxolane rings demonstrating a remarkable tolerance for various functional groups.
Collapse
Affiliation(s)
- Ganesh Kumar Dhandabani
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan First Road, Sanmin District, Kaohsiung City, 807, Taiwan
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Road, Zhongzheng Dist., Taipei City 100025, Taiwan
| | - Palaniraja Jeyakannu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan First Road, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Chia-Ling Shih
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan First Road, Sanmin District, Kaohsiung City, 807, Taiwan
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Road, Zhongzheng Dist., Taipei City 100025, Taiwan
| | - Aksa Mariyam Abraham
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan First Road, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Gopal Chandru Senadi
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science & Technology, SRM Nagar, Kattankulathur-603203, Chengalpattu District, Tamil Nadu, India
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan First Road, Sanmin District, Kaohsiung City, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, No. 100, Tzyou First Road, Sanmin District, Kaohsiung City 807, Taiwan
| |
Collapse
|
6
|
Kowalska E, Dyguda M, Artelska A, Albrecht A. Visible Light Promoted [3+2]-Cycloaddition for the Synthesis of Cyclopenta[ b]chromenocarbonitrile Derivatives. J Org Chem 2023; 88:16589-16597. [PMID: 38037694 PMCID: PMC10696553 DOI: 10.1021/acs.joc.3c02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
In the manuscript, a novel method for the preparation of cyclopenta[b]chromenocarbonitrile derivatives via [3+2] cycloaddition reaction of substituted 3-cyanochromones and N-cyclopropyloamines initiated by visible light catalysis has been described. The reaction was performed in the presence of Eosin Y as a photocatalyst. The key parameters responsible for the success of the described strategy are visible light, a small amount of photoredox catalyst, an anhydrous solvent, and an inert atmosphere.
Collapse
Affiliation(s)
- Ewelina Kowalska
- Institute
of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland
| | - Mateusz Dyguda
- Institute
of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland
| | - Angelika Artelska
- Institute
of Applied Radiation Chemistry, Lodz University
of Technology, Żeromskiego 116, Łódź 90-924, Poland
| | - Anna Albrecht
- Institute
of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland
| |
Collapse
|
7
|
Degroote F, Denoo B, Ryckaert B, Callebaut B, Van Hecke K, Hullaert J, Winne JM. Dithioallyl cation (3 + 2) cycloadditions under aprotic reaction conditions: rapid access to spiro-fused cyclopentane scaffolds. Org Biomol Chem 2023; 21:8117-8124. [PMID: 37786324 DOI: 10.1039/d3ob01273e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
We report a general method to effect all-carbon (3 + 2) cycloadditions that can elaborate cyclopentenes from a range of olefins. The required dithioallyl cation reagents can be generated in a newly developed mild protocol starting from 2-allyloxypyridine precursors, thus avoiding the use of strong Brønsted acids. The novel method significantly expands the substrate scope, which now also includes acid-sensitive olefins, and thus enables the preparation of previously inaccessible spiro-fused scaffold types from simple and readily available starting materials.
Collapse
Affiliation(s)
- Frederick Degroote
- OSgroup, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium.
| | - Bram Denoo
- OSgroup, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium.
| | - Bram Ryckaert
- OSgroup, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium.
| | - Brenda Callebaut
- OSgroup, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium.
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Jan Hullaert
- OSgroup, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium.
| | - Johan M Winne
- OSgroup, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium.
| |
Collapse
|
8
|
Mao Y, Fan P, Wang C. Photocatalyzed Formal All-Carbon [3+2] Cycloaddition of Aromatic Aldehydes with Arylethynyl Silanes. Org Lett 2022; 24:9413-9418. [PMID: 36534612 DOI: 10.1021/acs.orglett.2c03807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, we report a photoinduced TBADT-catalyzed formal all-carbon [3+2] cycloaddition of aromatic aldehydes and arylethynyl silanes, which combines acyl C-H and ortho C-H activation of aromatic aldehydes, offering a new method for constructing the indanone scaffold under mild conditions. By choosing an appropriate silane as the precursor, one can selectively retain or remove the α-silyl group of the indanone products during the reaction. Preliminary mechanistic studies point to a reaction mechanism involving a 1,5-H shift as a key step.
Collapse
Affiliation(s)
- Yujia Mao
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| | - Pei Fan
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China.,School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, Anhui 232038, P. R. China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
9
|
Ryckaert B, Hullaert J, Van Hecke K, Winne JM. Dearomative (3 + 2) Cycloadditions of Unprotected Indoles. Org Lett 2022; 24:4119-4123. [PMID: 35674713 DOI: 10.1021/acs.orglett.2c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The (3 + 2) cycloaddition of various indoles with a dithioallyl cation affords dearomatized cyclopentannulated adducts, with complete control of regioselectivity and excellent chemo- and diastereoselectivity. The success of the reaction critically relies on the use of an excess of very strong Brønsted acid, which paradoxically prevents carbocationic side reactions. The reaction tolerates sensitive functionalities such as basic amines or free hydroxyls, and we demonstrate its use in late stage derivatization of highly functionalized, unprotected indoles.
Collapse
Affiliation(s)
- Bram Ryckaert
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Jan Hullaert
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Kristof Van Hecke
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| |
Collapse
|
10
|
Niedbała P, Majdecki M, Grodek P, Jurczak J. H-Bond Mediated Phase-Transfer Catalysis: Enantioselective Generating of Quaternary Stereogenic Centers in β-Keto Esters. Molecules 2022; 27:molecules27082508. [PMID: 35458707 PMCID: PMC9024675 DOI: 10.3390/molecules27082508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
In this work, we would like to present the development of a highly optimized method for generating the quaternary stereogenic centers in β-keto esters. This enantioselective phase-transfer alkylation catalyzed by hybrid Cinchona catalysts allows for the efficient generation of the optically active products with excellent enantioselectivity, using only 1 mol% of the catalyst. The vast majority of phase-transfer catalysts in asymmetric synthesis work by creating ionic pairs with the nucleophile-attacking anionic substrate. Therefore, it is a sensible approach to search for new methodologies capable of introducing functional groups into the precursor’s structure, maintaining high yields and enantiomeric purity.
Collapse
|
11
|
Hui C, Wang S, Xu C. Dinitrogen extrusion from diazene in organic synthesis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
13
|
Tran DP, Sato Y, Yamamoto Y, Kawaguchi SI, Kodama S, Nomoto A, Ogawa A. Highly regio- and stereoselective phosphinylphosphination of terminal alkynes with tetraphenyldiphosphine monoxide under radical conditions. Beilstein J Org Chem 2021; 17:866-872. [PMID: 33968259 PMCID: PMC8077611 DOI: 10.3762/bjoc.17.72] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022] Open
Abstract
The homolytic cleavage of the PV(O)–PIII bond in tetraphenyldiphosphine monoxide simultaneously provides both pentavalent and trivalent phosphorus-centered radicals with different reactivities. The method using V-40 as an initiator is successfully investigated for the regio- and stereoselective phosphinylphosphination of terminal alkynes giving the corresponding trans-isomers of 1-diphenylphosphinyl-2-diphenylthiophosphinyl-1-alkenes in good yields. The protocol can be applied to a wide variety of terminal alkynes including both alkyl- and arylalkynes.
Collapse
Affiliation(s)
- Dat Phuc Tran
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yuki Sato
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yuki Yamamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Shin-Ichi Kawaguchi
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan
| | - Shintaro Kodama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Akiya Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|