1
|
Jiang W, Wu S, Xu D, Tu L, Xie Y, Pasqués-Gramage P, Boj PG, Díaz-García MA, Li F, Wu J, Li Z. Stable Xanthene Radicals and Their Heavy Chalcogen Analogues Showing Tunable Doublet Emission from Green to Near-infrared. Angew Chem Int Ed Engl 2025; 64:e202418762. [PMID: 39450583 DOI: 10.1002/anie.202418762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 10/26/2024]
Abstract
Organic luminescent radicals, unlike traditional closed-shell fluorescent emitters, exhibit distinct luminescence mechanisms, offering promising potential for optoelectronic devices. To date, stable luminescent radicals have predominantly been confined to polychlorinated triphenylmethyl radicals, underscoring the need for new platforms to expand their emission spectra. In this study, we report the synthesis of stable 9-aryl-substituted xanthene radicals and their heavy chalcogen analogues (1 a-c and 2 a-c), which exhibited excellent chemical stability and emission ranging from green to near-infrared (527-714 nm). Notably, the selenium-substituted radical (1 c) demonstrates a significantly enhanced photoluminescence quantum yield of 41 % when doped into its precursor solid. Additionally, the introduction of methoxyphenyl groups has largely enhanced the stability of the radical, showcasing an excellent photostability with the longest half-life of around 1792 h. The high internal quantum efficiency of up to 81 % was further validated in organic light-emitting diode. This study introduces a novel class of stable carbon-centered radicals with high tunability and functionality for photoelectric applications.
Collapse
Affiliation(s)
- Wanqing Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
- Department of chemistry, National University of, Singapore, 3 Science Drive 3, 117543, Singapore
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Shaofei Wu
- Department of chemistry, National University of, Singapore, 3 Science Drive 3, 117543, Singapore
| | - Duo Xu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
| | - Liangjing Tu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yujun Xie
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Pablo Pasqués-Gramage
- Departamento Física Aplicada and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Alicante, 03080, Spain
| | - Pedro G Boj
- Departamento de Óptica, Farmacología y Anatomía and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Alicante 03080, Spain
| | - María A Díaz-García
- Departamento Física Aplicada and Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Alicante, 03080, Spain
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
- Department of chemistry, National University of, Singapore, 3 Science Drive 3, 117543, Singapore
| | - Zhen Li
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350507, China
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
2
|
Deniz H, Yıldız T, Başpınar Küçük H. Intramolecular Friedel-Crafts Reaction with Trifluoroacetic Acid: Synthesizing Some New Functionalized 9-Aryl/Alkyl Thioxanthenes. ACS OMEGA 2024; 9:12596-12601. [PMID: 38524477 PMCID: PMC10956409 DOI: 10.1021/acsomega.3c07150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 03/26/2024]
Abstract
In this study, a series of halogen-substituted thioxanthenes were synthesized because the most important and biologically active derivatives of xanthenes are thioxanthenes. In order to obtain new thioxanthene derivatives, first, the starting molecules were synthesized by the appropriate reaction methods in two steps. The intramolecular Friedel-Crafts alkylation (FCA) method was used to convert the prepared three aromatic substituted starting alcohol compounds to their corresponding thioxanthenes by cyclization. For the intramolecular FCA reaction of secondary alcohols, which are the starting compounds (1a-1t), organic Bro̷nsted acids, which require more innovative, easier, and suitable reaction conditions, were used instead of halide reagents with corrosive effects as classical FCA catalysts. Trifluoroacetic acid was determined to be the organocatalyst with the best yield. Therefore, some original 9-aryl/alkyl thioxanthene derivatives (2a-2t) were synthesized using the optimized FCA method. In addition, a new sulfone derivative of thioxanthene 3i was prepared by performing the oxidation reaction with one of the obtained new thioxanthene 2i. Thioxanthenes and their derivatives are important heterocyclic structures that contain pharmacologically valuable sulfur and are used in the treatment of psychotic diseases such as Alzheimer's or schizophrenia, as well as a number of potent biological activities.
Collapse
Affiliation(s)
- Hakan Deniz
- Department of Chemistry,
Organic Chemistry Division, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey
| | - Tülay Yıldız
- Department of Chemistry,
Organic Chemistry Division, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey
| | - Hatice Başpınar Küçük
- Department of Chemistry,
Organic Chemistry Division, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey
| |
Collapse
|
3
|
Zhou C, Huang M, Yao Y, Chen C, Yi X, Yang KF, Lai GQ, Xuan W, Zhang P. Transition-metal-free and additive-free intermolecular hydroarylation of alkenes with indoles in hexafluoroisopropanol. Org Biomol Chem 2023. [PMID: 38009332 DOI: 10.1039/d3ob01570j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Hydroarylation of alkenes is one of the most straightforward and atom-economical strategy for the construction of multi-aryl-substituted alkanes, but systematic studies have been limited to transition metal catalysis. Here we report a hexafluoroisopropanol (HFIP)-promoted hydroarylation of alkenes with indoles without the presence of transition metal catalysts or any additive. HFIP was the only reagent used in this work, and could be easily removed via evaporation, and recovered via distillation in industry settings. This reaction was shown to provide an efficient, clean and operationally simple procedure with a remarkable substrate scope and versatile transformations, delivering a variety of multi-aryl alkanes incorporating the indole motif. In preliminary studies, several of these products showed biologically activity against cells from an array of human cancer cell lines. A mechanistic study was also carried out and suggested that the quinone methide might be the key intermediate. And in contrast to the conclusions of a previous report, the current work suggested that protonation by HFIP might not be the rate-determining step.
Collapse
Affiliation(s)
- Changsheng Zhou
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou 311121, China.
| | - Ming Huang
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou 311121, China.
| | - Yufeng Yao
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou 311121, China.
| | - Chunyu Chen
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou 311121, China.
| | - Xin Yi
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou 311121, China.
| | - Ke-Fang Yang
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou 311121, China.
| | - Guo-Qiao Lai
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou 311121, China.
| | - Wenjing Xuan
- Westlake University, School of Engineering, Hangzhou 310030, China
| | - Pinglu Zhang
- Hangzhou Normal University, College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou 311121, China.
| |
Collapse
|
4
|
Can Üsküp H, Yıldız T, Onar HÇ, Hasdemir B. Synthesis of Novel 1,4-Diketone Derivatives and Their Further Cyclization. ACS OMEGA 2023; 8:14047-14052. [PMID: 37091374 PMCID: PMC10116510 DOI: 10.1021/acsomega.3c00610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
One of the important reactions to obtain a new carbon-carbon bond is the Stetter reaction, which is generally via a nucleophilic catalyst like cyanide or thiazolium-NHC catalysts. In particular, 1,4-diketones with very functional properties are obtained by the Stetter reaction with the intermolecular reaction of an aldehyde and an α,β-unsaturated ketone. In this study, we synthesized new derivatives (substituted arenoxy) of 1,4-diketone compounds (2a-2n) with useful features by a new version of the Stetter reaction method. In our work, arenoxy benzaldehyde derivatives with different structures as the Michael donor and methyl vinyl ketone as the Michael acceptor were used for the intermolecular Stetter reaction. The reaction was catalyzed by 3-benzyl-5-(2-hydroxyethyl)-4-methylthiazolium chloride (3b), using triethylamine for the basic medium and dimethyl sulfoxide as the solvent. As a result, some novel arenoxy-substituted 1,4-diketones were gained with good yields at room temperature within 24 h through an intermolecular Stetter reaction. In addition, new furan and pyrrole derivatives were prepared by performing the cyclization reaction with one of the obtained new diketone compounds.
Collapse
Affiliation(s)
- Hacer Can Üsküp
- Department of Chemistry,
Organic Chemistry Division, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey
| | - Tülay Yıldız
- Department of Chemistry,
Organic Chemistry Division, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey
| | - Hülya Ç. Onar
- Department of Chemistry,
Organic Chemistry Division, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey
| | - Belma Hasdemir
- Department of Chemistry,
Organic Chemistry Division, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey
| |
Collapse
|
5
|
Başpınar Küçük H, Alhonaish A, Yıldız T, Güzel M. An efficient approach to access 2,5‐disubstituted 1,3,4‐oxadiazoles by oxidation of 2‐arenoxybenzaldehyde
N‐
acyl hydrazones with molecular iodine. ChemistrySelect 2022. [DOI: 10.1002/slct.202201391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hatice Başpınar Küçük
- Istanbul University-Cerrahpasa Faculty of Engineering Department of Chemistry, Organic Chemistry Division Avcılar/ISTANBUL 34320 Turkey
| | - Anoud Alhonaish
- Istanbul University-Cerrahpasa Faculty of Engineering Department of Chemistry, Organic Chemistry Division Avcılar/ISTANBUL 34320 Turkey
| | - Tülay Yıldız
- Istanbul University-Cerrahpasa Faculty of Engineering Department of Chemistry, Organic Chemistry Division Avcılar/ISTANBUL 34320 Turkey
| | - Mustafa Güzel
- Istanbul Medipol University, Research Institute for Health Sciences and Technologies (SABITA) Center of Drug Discovery and Development Kavacık- Beykoz/Istanbul 34810 Turkey
- Istanbul Medipol University, International School of Medicine, Department of Medical Pharmacology, Kavacik Campus Kavacik-Beykoz/ISTANBUL 34810 Turkey
| |
Collapse
|