1
|
Zhou J, Huang M. Navigating the landscape of enzyme design: from molecular simulations to machine learning. Chem Soc Rev 2024; 53:8202-8239. [PMID: 38990263 DOI: 10.1039/d4cs00196f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Global environmental issues and sustainable development call for new technologies for fine chemical synthesis and waste valorization. Biocatalysis has attracted great attention as the alternative to the traditional organic synthesis. However, it is challenging to navigate the vast sequence space to identify those proteins with admirable biocatalytic functions. The recent development of deep-learning based structure prediction methods such as AlphaFold2 reinforced by different computational simulations or multiscale calculations has largely expanded the 3D structure databases and enabled structure-based design. While structure-based approaches shed light on site-specific enzyme engineering, they are not suitable for large-scale screening of potential biocatalysts. Effective utilization of big data using machine learning techniques opens up a new era for accelerated predictions. Here, we review the approaches and applications of structure-based and machine-learning guided enzyme design. We also provide our view on the challenges and perspectives on effectively employing enzyme design approaches integrating traditional molecular simulations and machine learning, and the importance of database construction and algorithm development in attaining predictive ML models to explore the sequence fitness landscape for the design of admirable biocatalysts.
Collapse
Affiliation(s)
- Jiahui Zhou
- School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| |
Collapse
|
2
|
Huang ZY, Taizoumbe KA, Liang C, Goldfuss B, Xu JH, Dickschat JS. Spiroluchuene A Synthase: A Cyclase from Aspergillus luchuensis Forming a Spirotetracyclic Diterpene. Angew Chem Int Ed Engl 2023; 62:e202315659. [PMID: 37962519 DOI: 10.1002/anie.202315659] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/15/2023]
Abstract
The diterpene synthase AlTS was identified from Aspergillus luchuensis. AlTS catalyses the formation of the diterpene hydrocarbon spiroluchuene A, which exhibits a novel skeleton characterised by a spirocyclic ring system. The cyclisation mechanism towards this compound was elucidated through isotopic labelling experiments in conjunction with DFT calculations and metadynamic simulations. The biosynthetic intermediate luchudiene, besides the derivative spiroluchuene B, was captured from an enzyme variant obtained through site-directed mutagenesis. With its 10-membered ring luchudiene is structurally related to germacrenes and can undergo a Cope rearrangement to luchuelemene.
Collapse
Affiliation(s)
- Zheng-Yu Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Kizerbo A Taizoumbe
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Chengqin Liang
- College of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Bernd Goldfuss
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
3
|
Li Z, Zhang L, Xu K, Jiang Y, Du J, Zhang X, Meng LH, Wu Q, Du L, Li X, Hu Y, Xie Z, Jiang X, Tang YJ, Wu R, Guo RT, Li S. Molecular insights into the catalytic promiscuity of a bacterial diterpene synthase. Nat Commun 2023; 14:4001. [PMID: 37414771 PMCID: PMC10325987 DOI: 10.1038/s41467-023-39706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
Diterpene synthase VenA is responsible for assembling venezuelaene A with a unique 5-5-6-7 tetracyclic skeleton from geranylgeranyl pyrophosphate. VenA also demonstrates substrate promiscuity by accepting geranyl pyrophosphate and farnesyl pyrophosphate as alternative substrates. Herein, we report the crystal structures of VenA in both apo form and holo form in complex with a trinuclear magnesium cluster and pyrophosphate group. Functional and structural investigations on the atypical 115DSFVSD120 motif of VenA, versus the canonical Asp-rich motif of DDXX(X)D/E, reveal that the absent second Asp of canonical motif is functionally replaced by Ser116 and Gln83, together with bioinformatics analysis identifying a hidden subclass of type I microbial terpene synthases. Further structural analysis, multiscale computational simulations, and structure-directed mutagenesis provide significant mechanistic insights into the substrate selectivity and catalytic promiscuity of VenA. Finally, VenA is semi-rationally engineered into a sesterterpene synthase to recognize the larger substrate geranylfarnesyl pyrophosphate.
Collapse
Affiliation(s)
- Zhong Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Kangwei Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Yuanyuan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Jieke Du
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Ling-Hong Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, Shandong, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| | - Qile Wu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Xiaoju Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Yuechan Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Zhenzhen Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xukai Jiang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
4
|
Liu Y, Chen X, Zhang C. Sustainable biosynthesis of valuable diterpenes in microbes. ENGINEERING MICROBIOLOGY 2023; 3:100058. [PMID: 39628524 PMCID: PMC11611012 DOI: 10.1016/j.engmic.2022.100058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 12/06/2024]
Abstract
Diterpenes, or diterpenoids, are the most abundant and diverse subgroup of terpenoids, the largest family of secondary metabolites. Most diterpenes possess broad biological activities including anti-inflammatory, antiviral, anti-tumoral, antimicrobial, anticancer, antifungal, antidiabetic, cardiovascular protective, and phytohormone activities. As such, diterpenes have wide applications in medicine (e.g., the anticancer drug Taxol and the antibiotic pleuromutilin), agriculture (especially as phytohormones such as gibberellins), personal care (e.g., the fragrance sclareol) and food (e.g., steviol glucosides as low-calorie sweeteners) industries. Diterpenes are biosynthesized in a common route with various diterpene synthases and decoration enzymes like cytochrome P450 oxidases, glycosidases, and acyltransferases. Recent advances in DNA sequencing and synthesis, omics analysis, synthetic biology, and metabolic engineering have enabled efficient production of diterpenes in several chassis hosts like Escherichia coli, Saccharomyces cerevisiae, Yarrowia lipolytica, Rhodosporidium toruloides, and Fusarium fujikuroi. This review summarizes the recently discovered diterpenes, their related enzymes and biosynthetic pathways, particularly highlighting the microbial synthesis of high-value diterpenes directly from inexpensive carbon sources (e.g., sugars). The high titers (>4 g/L) achieved mean that some of these endeavors are reaching or close to commercialization. As such, we envisage a bright future in translating microbial synthesis of diterpenes into commercialization.
Collapse
Affiliation(s)
- Yanbin Liu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A*STAR), 31 Biopolis Way, Level 6 Nanos building, Singapore 138669, Singapore
| |
Collapse
|
5
|
Yan X, Zhou J, Ge J, Li W, Liang D, Singh W, Black G, Nie S, Liu J, Sun M, Qiao J, Huang M. Computer-Informed Engineering: A New Class I Sesquiterpene Synthase JeSTS4 for the Synthesis of an Unusual C10-( S)-Bicyclogermacrene. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoguang Yan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Jiahui Zhou
- School of Chemistry & Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - Jianjun Ge
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Weiguo Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Dongmei Liang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Warispreet Singh
- School of Chemistry & Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Gary Black
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Shengxin Nie
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Jian Liu
- Wuqing District Center for Disease Control and Prevention, Tianjin 301700, P. R. China
| | - Meiqing Sun
- Wuqing District Center for Disease Control and Prevention, Tianjin 301700, P. R. China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
| | - Meilan Huang
- School of Chemistry & Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom
| |
Collapse
|
6
|
Dickschat JS, Xu H. Mechanistic Investigations on Microbial Type I Terpene Synthases through Site-Directed Mutagenesis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1675-8208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractDuring the past three decades many terpene synthases have been characterised from all kingdoms of life. Enzymes of type I, from bacteria, fungi and protists, commonly exhibit several highly conserved motifs and single residues, and the available crystal structures show a shared α-helical fold, while the overall sequence identity is generally low. Several enzymes have been studied by site-directed mutagenesis, giving valuable insights into terpene synthase catalysis and the intriguing mechanisms of terpene synthases. Some mutants are also preparatively useful and give higher yields than the wild type or a different product that is otherwise difficult to access. The accumulated knowledge obtained from these studies is presented and discussed in this review.1 Introduction2 Residues for Substrate Binding and Catalysis3 Residues with Structural Function4 Residues Contouring the Active Site Cavity5 Other Residues6 Conclusions
Collapse
|