1
|
Klabenkova K, Zakhryamina A, Burakova E, Bizyaev S, Fokina A, Stetsenko D. Synthesis of New Polyfluoro Oligonucleotides via Staudinger Reaction. Int J Mol Sci 2024; 26:300. [PMID: 39796153 PMCID: PMC11719919 DOI: 10.3390/ijms26010300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Nowadays, nucleic acid derivatives capable of modulating gene expression at the RNA level have gained widespread recognition as promising therapeutic agents. A suitable degree of biological stability of oligonucleotide therapeutics is required for in vivo application; this can be most expeditiously achieved by the chemical modification of the internucleotidic phosphate group, which may also affect their cellular uptake, tissue distribution and pharmacokinetics. Our group has previously developed a strategy for the chemical modification of the phosphate group via the Staudinger reaction on a solid phase of the intermediate dinucleoside phosphite triester and a range of, preferably, electron deficient organic azides such as sulfonyl azides during automated solid-phase DNA synthesis according to the conventional β-cyanoethyl phosphoramidite scheme. Polyfluoro compounds are characterized by unique properties that have prompted their extensive application both in industry and in scientific research. We report herein the synthesis and isolation of novel oligodeoxyribonucleotides incorporating internucleotidic perfluoro-1-octanesulfonyl phosphoramidate or 2,2,2-trifluoroethanesulfonyl phosphoramidate groups. In addition, novel oligonucleotide derivatives with fluorinated zwitterionic phosphate mimics were synthesized by a tandem methodology, which involved (a) the introduction of a carboxylic ester group at the internucleotidic position via the Staudinger reaction with methyl 2,2-difluoro-3-azidosulfonylacetate; and (b) treatment with an aliphatic diamine, e.g., 1,1-dimethylethylenediamine or 1,3-diaminopropane. It was further shown that the polyfluoro oligonucleotides obtained were able to form complementary duplexes with either DNA or RNA, which were not significantly differing in stability from the natural counterparts. Long-chain perfluoroalkyl oligonucleotides were taken up into cultured human cells in the absence of a transfection agent. It may be concluded that the polyfluoro oligonucleotides described here can represent a useful platform for designing oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Kristina Klabenkova
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alyona Zakhryamina
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia;
| | - Ekaterina Burakova
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Sergei Bizyaev
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alesya Fokina
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Dmitry Stetsenko
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Dalla Pozza M, Abdullrahman A, Cardin CJ, Gasser G, Hall JP. Three's a crowd - stabilisation, structure, and applications of DNA triplexes. Chem Sci 2022; 13:10193-10215. [PMID: 36277639 PMCID: PMC9473520 DOI: 10.1039/d2sc01793h] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/02/2022] [Indexed: 12/16/2022] Open
Abstract
DNA is a strikingly flexible molecule and can form a variety of secondary structures, including the triple helix, which is the subject of this review. The DNA triplex may be formed naturally, during homologous recombination, or can be formed by the introduction of a synthetic triplex forming oligonucleotide (TFO) to a DNA duplex. As the TFO will bind to the duplex with sequence specificity, there is significant interest in developing TFOs with potential therapeutic applications, including using TFOs as a delivery mechanism for compounds able to modify or damage DNA. However, to combine triplexes with functionalised compounds, a full understanding of triplex structure and chemical modification strategies, which may increase triplex stability or in vivo degradation, is essential - these areas will be discussed in this review. Ruthenium polypyridyl complexes, which are able to photooxidise DNA and act as luminescent DNA probes, may serve as a suitable photophysical payload for a TFO system and the developments in this area in the context of DNA triplexes will also be reviewed.
Collapse
Affiliation(s)
- Maria Dalla Pozza
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - Ahmad Abdullrahman
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| | - Christine J Cardin
- Department of Chemistry, University of Reading Whiteknights Reading RG6 6AD UK
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - James P Hall
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| |
Collapse
|
3
|
Santorelli A, Gothelf K. Conjugation of chemical handles and functional moieties to DNA during solid phase synthesis with sulfonyl azides. Nucleic Acids Res 2022; 50:7235-7246. [PMID: 35801866 PMCID: PMC9303310 DOI: 10.1093/nar/gkac566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
Labelling of oligonucleotides with dyes, targeting ligands, and other moieties has become ever more essential in life-sciences. Conventionally, modifications are introduced to oligonucleotides during solid phase synthesis by special phosphoramidites functionalised with a chemical handle or the desired functional group. In this work, we present a facile and inexpensive method to introduce modifications to oligonucleotides without the need for special phosphoramidites. Sulfonyl azides are applied to react with one or more selected phosphite intermediates during solid phase synthesis. We have prepared 11 sulfonyl azides with different chemical handles such as amine, azide, alkyne, and thiol, and we have further introduced functionalities such as pyrene, other dyes, photo-switchable azobenzenes, and a steroid. The method is compatible with current phosphoramidite-based automated oligonucleotide synthesis and serves as a simple alternative to the unstable and expensive special phosphoramidites currently used for conjugation to oligonucleotides.
Collapse
Affiliation(s)
- Angel Santorelli
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
| | - Kurt V Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Central Denmark Region, 8000, Denmark
| |
Collapse
|
4
|
Su Y, Raguraman P, Veedu RN, Filichev VV. Phosphorothioate modification improves exon-skipping of antisense oligonucleotides based on sulfonyl phosphoramidates in mdx mouse myotubes. Org Biomol Chem 2022; 20:3790-3797. [PMID: 35438707 DOI: 10.1039/d2ob00304j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2'-O-Methyl (2'-OMe) antisense oligonucleotides (AOs) possessing a various number of 4-(trimethylammonio)butylsulfonyl or tosyl phosphoramidates (N+ and Ts-modifications, respectively) instead of a native phosphodiester linkage were designed to skip exon-23 in dystrophin pre-mRNA transcript in mdx mice myotubes. AOs bearing several zwitterionic N+ modifications in the sequence had remarkably increased thermal stability towards complementary mRNA in comparison with 2'-OMe-RNAs having negatively charged Ts and phosphorothioate (PS) linkages. However, only Ts-modified AOs exhibited a similar level of exon skipping in comparison with fully modified PS-containing 2'-OMe-RNA, whereas the exon skipping induced by N+ modified AOs was much lower with no exon-skipping detected for AOs having seven N+ modifications. The level of exon-skipping was improved once Ts and especially N+ moieties were used in combination with PS-modification, most likely through improved cellular and nuclear uptake of AOs. These results provide new insights on expanding the design of novel chemically modified AOs based on phosphate modifications.
Collapse
Affiliation(s)
- Yongdong Su
- School of Natural Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Prithi Raguraman
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia. .,Perron Institute for Neurological and Translational Science, Perth 6150, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia. .,Perron Institute for Neurological and Translational Science, Perth 6150, Australia
| | - Vyacheslav V Filichev
- School of Natural Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| |
Collapse
|
5
|
Kandasamy P, Liu Y, Aduda V, Akare S, Alam R, Andreucci A, Boulay D, Bowman K, Byrne M, Cannon M, Chivatakarn O, Shelke JD, Iwamoto N, Kawamoto T, Kumarasamy J, Lamore S, Lemaitre M, Lin X, Longo K, Looby R, Marappan S, Metterville J, Mohapatra S, Newman B, Paik IH, Patil S, Purcell-Estabrook E, Shimizu M, Shum P, Standley S, Taborn K, Tripathi S, Yang H, Yin Y, Zhao X, Dale E, Vargeese C. Impact of guanidine-containing backbone linkages on stereopure antisense oligonucleotides in the CNS. Nucleic Acids Res 2022; 50:5401-5423. [PMID: 35106589 PMCID: PMC9177980 DOI: 10.1093/nar/gkac037] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 12/02/2022] Open
Abstract
Attaining sufficient tissue exposure at the site of action to achieve the desired pharmacodynamic effect on a target is an important determinant for any drug discovery program, and this can be particularly challenging for oligonucleotides in deep tissues of the CNS. Herein, we report the synthesis and impact of stereopure phosphoryl guanidine-containing backbone linkages (PN linkages) to oligonucleotides acting through an RNase H-mediated mechanism, using Malat1 and C9orf72 as benchmarks. We found that the incorporation of various types of PN linkages to a stereopure oligonucleotide backbone can increase potency of silencing in cultured neurons under free-uptake conditions 10-fold compared with similarly modified stereopure phosphorothioate (PS) and phosphodiester (PO)-based molecules. One of these backbone types, called PN-1, also yielded profound silencing benefits throughout the mouse brain and spinal cord at low doses, improving both the potency and durability of response, especially in difficult to reach brain tissues. Given these benefits in preclinical models, the incorporation of PN linkages into stereopure oligonucleotides with chimeric backbone modifications has the potential to render regions of the brain beyond the spinal cord more accessible to oligonucleotides and, consequently, may also expand the scope of neurological indications amenable to oligonucleotide therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xuena Lin
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | | | | | | - Pochi Shum
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | - Kris Taborn
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | - Hailin Yang
- Wave Life Sciences, Cambridge, MA 02138, USA
| | - Yuan Yin
- Wave Life Sciences, Cambridge, MA 02138, USA
| | - Xiansi Zhao
- Wave Life Sciences, Cambridge, MA 02138, USA
| | - Elena Dale
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | |
Collapse
|
6
|
Danielsen MB, Wengel J. Cationic oligonucleotide derivatives and conjugates: A favorable approach for enhanced DNA and RNA targeting oligonucleotides. Beilstein J Org Chem 2021; 17:1828-1848. [PMID: 34386102 PMCID: PMC8329367 DOI: 10.3762/bjoc.17.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Antisense oligonucleotides (ASOs) have the ability of binding to endogenous nucleic acid targets, thereby inhibiting the gene expression. Although ASOs have great potential in the treatment of many diseases, the search for favorable toxicity profiles and distribution has been challenging and consequently impeded the widespread use of ASOs as conventional medicine. One strategy that has been employed to optimize the delivery profile of ASOs, is the functionalization of ASOs with cationic amine groups, either by direct conjugation onto the sugar, nucleobase or internucleotide linkage. The introduction of these positively charged groups has improved properties like nuclease resistance, increased binding to the nucleic acid target and improved cell uptake for oligonucleotides (ONs) and ASOs. The modifications highlighted in this review are some of the most prevalent cationic amine groups which have been attached as single modifications onto ONs/ASOs. The review has been separated into three sections, nucleobase, sugar and backbone modifications, highlighting what impact the cationic amine groups have on the ONs/ASOs physiochemical and biological properties. Finally, a concluding section has been added, summarizing the important knowledge from the three chapters, and examining the future design for ASOs.
Collapse
Affiliation(s)
- Mathias B Danielsen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|