1
|
Lang M, Tardieu D, Pousse B, Compain P, Kern N. Diastereoselective access to C, C-glycosyl amino acids via iron-catalyzed, auxiliary-enabled MHAT coupling. Chem Commun (Camb) 2024; 60:3154-3157. [PMID: 38407341 DOI: 10.1039/d3cc06249j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Access to C,C-glycosyl amino acids as a novel class of glycomimetics is reported by means of radical generation, intermolecular addition and stereoselective reduction via a metal-induced hydrogen atom transfer (MHAT) sequence. The 'matched' coupling of exo-D-glycals with an enantiopure dehydroalanine bearing a (R)-configured benzyl oxazolidinone enables a singular case of two-fold diastereocontrol under iron catalysis. In the common exo-D-glucal series, the nature of the C-2 substituent was found to play a key role from both reactivity and stereocontrol aspects.
Collapse
Affiliation(s)
- Mylène Lang
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Damien Tardieu
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Benoit Pousse
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Nicolas Kern
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087, Strasbourg, France.
| |
Collapse
|
2
|
Ince D, Lucas TM, Malaker SA. Current strategies for characterization of mucin-domain glycoproteins. Curr Opin Chem Biol 2022; 69:102174. [PMID: 35752002 DOI: 10.1016/j.cbpa.2022.102174] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
Abstract
Glycosylation, and especially O-linked glycosylation, remains a critical blind spot in the understanding of post-translational modifications. Due to their nature as proteins defined by a large density and abundance of O-glycosylation, mucins present extra challenges in the analysis of their structure and function. However, recent breakthroughs in multiple areas of research have rendered mucin-domain glycoproteins more accessible to current characterization techniques. In particular, the adaptation of mucinases to glycoproteomic workflows, the manipulation of cellular glycosylation pathways, and the advances in synthetic methods to more closely mimic mucin domains have introduced new and exciting avenues to study mucin glycoproteins. Here, we summarize recent developments in understanding the structure and biological function of mucin domains and their associated glycans, from glycoproteomic tools and visualization methods to synthetic glycopeptide mimetics.
Collapse
Affiliation(s)
- Deniz Ince
- Department of Chemistry, Yale University, 275 Prospect St, New Haven, CT 06511, United States
| | - Taryn M Lucas
- Department of Chemistry, Yale University, 275 Prospect St, New Haven, CT 06511, United States
| | - Stacy A Malaker
- Department of Chemistry, Yale University, 275 Prospect St, New Haven, CT 06511, United States.
| |
Collapse
|
3
|
Hadar D, Strugach DS, Amiram M. Conjugates of Recombinant Protein‐Based Polymers: Combining Precision with Chemical Diversity. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dagan Hadar
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Daniela S. Strugach
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Miriam Amiram
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| |
Collapse
|
4
|
Rosselin M, Chinoy ZS, Bravo-Anaya LM, Lecommandoux S, Garanger E. Multivalent Elastin-Like Glycopolypeptides: Subtle Chemical Structure Modifications with High Impact on Lectin Binding Affinity. ACS Macro Lett 2021; 10:65-70. [PMID: 35548980 DOI: 10.1021/acsmacrolett.0c00775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A library of synthetic elastin-like glycopolypeptides were synthesized and screened by microscale thermophoresis to identify key structural parameters affecting lectin binding efficacy. While polypeptide backbone size and glycovalency were found to have little influence, the presence of a linker at the anomeric position of galactose and the absence of positive charge on the polypeptide residue holding the sugar unit were found to be critical for the binding to RCA120.
Collapse
Affiliation(s)
- Marie Rosselin
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| | - Zoeisha S. Chinoy
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| | | | | | - Elisabeth Garanger
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac F-33600, France
| |
Collapse
|
5
|
Li S, Jaszczyk J, Pannecoucke X, Poisson T, Martin OR, Nicolas C. Stereospecific Synthesis of Glycoside Mimics Through Migita‐Kosugi‐Stille Cross‐Coupling Reactions of Chemically and Configurationally Stable 1‐
C
‐Tributylstannyl Iminosugars. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sizhe Li
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres, BP 6759 45067 Orléans cedex 2 France
| | - Justyna Jaszczyk
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres, BP 6759 45067 Orléans cedex 2 France
| | - Xavier Pannecoucke
- Normandie Université, COBRA, UMR 6014 et FR 3038 Université de Rouen, INSA Rouen, CNRS 1 rue Tesnière 76821 Mont Saint-Aignan Cedex France
| | - Thomas Poisson
- Normandie Université, COBRA, UMR 6014 et FR 3038 Université de Rouen, INSA Rouen, CNRS 1 rue Tesnière 76821 Mont Saint-Aignan Cedex France
- Institut Universitaire de France 1 rue Descartes 75231 Paris France
| | - Olivier R. Martin
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres, BP 6759 45067 Orléans cedex 2 France
| | - Cyril Nicolas
- Institut de Chimie Organique et Analytique UMR 7311 Université d'Orléans et CNRS Rue de Chartres, BP 6759 45067 Orléans cedex 2 France
| |
Collapse
|
6
|
Anaya LMB, Petitdemange R, Rosselin M, Ibarboure E, Garbay B, Garanger E, Deming TJ, Lecommandoux S. Design of Thermoresponsive Elastin-Like Glycopolypeptides for Selective Lectin Binding and Sorting. Biomacromolecules 2020; 22:76-85. [PMID: 32379435 DOI: 10.1021/acs.biomac.0c00374] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Selective lectin binding and sorting was achieved using thermosensitive glycoconjugates derived from recombinant elastin-like polypeptides (ELPs) in simple centrifugation-precipitation assays. A recombinant ELP, (VPGXG)40, containing periodically spaced methionine residues was used to enable chemoselective postsynthetic modification via thioether alkylation using alkyne functional epoxide derivatives. The resulting sulfonium groups were selectively demethylated to give alkyne functionalized homocysteine residues, which were then reacted with azido-functionalized monosaccharides to obtain ELP glycoconjugates with periodic saccharide functionality. These modifications were also found to allow modulation of ELP temperature dependent water solubility. The multivalent ELP glycoconjugates were evaluated for specific recognition, binding and separation of the lectin Ricinus communis agglutinin (RCA120) from a complex protein mixture. RCA120 and ELP glycoconjugate interactions were evaluated using laser scanning confocal microscopy and dynamic light scattering. Due to the thermoresponsive nature of the ELP glycoconjugates, it was found that heating a mixture of galactose-functionalized ELP and RCA120 in complex media selectively yielded a phase separated pellet of ELP-RCA120 complexes. Based on these results, ELP glycoconjugates show promise as designer biopolymers for selective protein binding and sorting.
Collapse
Affiliation(s)
| | - Rosine Petitdemange
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France.,Departments of Chemistry and Biochemistry and Bioengineering, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Marie Rosselin
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Emmanuel Ibarboure
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Bertrand Garbay
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Elisabeth Garanger
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Timothy J Deming
- Departments of Chemistry and Biochemistry and Bioengineering, University of California-Los Angeles, Los Angeles, California 90095, United States
| | | |
Collapse
|
7
|
Yoshimura Y, Nagashima I, Yokoe T, Kishimoto T, Shimizu H, Chiba Y. A new strategy for the chemoenzymatic synthesis of glycopeptides by De-O-acetylation with an esterase and glycosylations with glycosyltransferases. Carbohydr Res 2020; 492:108023. [PMID: 32388217 DOI: 10.1016/j.carres.2020.108023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 10/24/2022]
Abstract
Glycopeptides are fragments of glycoproteins and are important in evaluating the biological roles of carbohydrates in glycoproteins. Fmoc solid-phase peptide synthesis using acetyl-protected glycosylated amino acids is a common strategy for the preparation of glycopeptides, but this approach normally requires chemical de-O-acetylation with a base that β-eliminates sugar residues and epimerizes the peptide backbone. Here we demonstrate a facile new chemoenzymatic synthetic strategy for glycopeptides, using an esterase for the de-O-acetylation of sugar residues and glycosyltransferases for successive sugar elongations at neutral pH.
Collapse
Affiliation(s)
- Yayoi Yoshimura
- Japan Bioindustry Association, 2-26-9 Hatchobori, Chuo-ku, Tokyo, 104-0032, Japan; Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| | - Izuru Nagashima
- Bioproduction Research Institute, Department of Life Science and Biotechnology, Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Takayuki Yokoe
- Bioproduction Research Institute, Department of Life Science and Biotechnology, Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Toshimitsu Kishimoto
- Japan Bioindustry Association, 2-26-9 Hatchobori, Chuo-ku, Tokyo, 104-0032, Japan
| | - Hiroki Shimizu
- Bioproduction Research Institute, Department of Life Science and Biotechnology, Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yasunori Chiba
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
8
|
Marqvorsen MHS, Araman C, van Kasteren SI. Going Native: Synthesis of Glycoproteins and Glycopeptides via Native Linkages To Study Glycan-Specific Roles in the Immune System. Bioconjug Chem 2019; 30:2715-2726. [PMID: 31580646 PMCID: PMC6873266 DOI: 10.1021/acs.bioconjchem.9b00588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/30/2019] [Indexed: 12/16/2022]
Abstract
Glycosylation plays a myriad of roles in the immune system: Certain glycans can interact with specific immune receptors to kickstart a pro-inflammatory response, whereas other glycans can do precisely the opposite and ameliorate the immune response. Specific glycans and glycoforms can themselves become the targets of the adaptive immune system, leading to potent antiglycan responses that can lead to the killing of altered self- or pathogenic species. This hydra-like set of roles glycans play is of particular importance in cancer immunity, where it influences the anticancer immune response, likely playing pivotal roles in tumor survival or clearance. The complexity of carbohydrate biology requires synthetic access to glycoproteins and glycopeptides that harbor homogeneous glycans allowing the probing of these systems with high precision. One particular complicating factor in this is that these synthetic structures are required to be as close to the native structures as possible, as non-native linkages can themselves elicit immune responses. In this Review, we discuss examples and current strategies for the synthesis of natively linked single glycoforms of peptides and proteins that have enabled researchers to gain new insights into glycoimmunology, with a particular focus on the application of these reagents in cancer immunology.
Collapse
Affiliation(s)
- Mikkel H. S. Marqvorsen
- Leiden
Institute of Chemistry, Institute for Chemical Immunology Gorlaeus
Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Can Araman
- Leiden
Institute of Chemistry, Institute for Chemical Immunology Gorlaeus
Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sander I. van Kasteren
- Leiden
Institute of Chemistry, Institute for Chemical Immunology Gorlaeus
Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
9
|
Neuhaus K, Wamhoff EC, Freichel T, Grafmüller A, Rademacher C, Hartmann L. Asymmetrically Branched Precision Glycooligomers Targeting Langerin. Biomacromolecules 2019; 20:4088-4095. [PMID: 31600054 DOI: 10.1021/acs.biomac.9b00906] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Asymmetrically branched precision glycooligomers are synthesized by solid-phase polymer synthesis for studying multivalent carbohydrate-protein interactions. Through the stepwise assembly of Fmoc-protected oligo(amidoamine) building blocks and Fmoc/Dde-protected lysine, straightforward variation of structural parameters such as the number and length of arms, as well as the number and position of carbohydrate ligands, is achieved. Binding of 1-arm and 3-arm glycooligomers toward lectin receptors langerin and concanavalin A (ConA) was evaluated where the smallest 3-arm glycooligomer shows the highest binding toward langerin, and stepwise elongation of one, two, or all three arms leads to decreased binding. When directly comparing binding toward langerin and ConA, we find that structural variation of the scaffold affects glycomimetic ligand binding differently for the different targets, indicating the potential to tune such ligands not only for their avidity but also for their selectivity toward different lectins.
Collapse
Affiliation(s)
- Kira Neuhaus
- Institute of Organic Chemistry and Macromolecular Chemistry , Heinrich-Heine-Universität Düsseldorf , Universitätsstr. 1 , 40225 Düsseldorf , Germany
| | - Eike-Christian Wamhoff
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany.,Department of Biology, Chemistry and Pharmacy , Freie Universität Berlin , Königin-Luise-Straße 28-30 , 14195 Berlin , Germany
| | - Tanja Freichel
- Institute of Organic Chemistry and Macromolecular Chemistry , Heinrich-Heine-Universität Düsseldorf , Universitätsstr. 1 , 40225 Düsseldorf , Germany
| | - Andrea Grafmüller
- Department of Theory and Bio-Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany
| | - Christoph Rademacher
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14424 Potsdam , Germany.,Department of Biology, Chemistry and Pharmacy , Freie Universität Berlin , Königin-Luise-Straße 28-30 , 14195 Berlin , Germany
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry , Heinrich-Heine-Universität Düsseldorf , Universitätsstr. 1 , 40225 Düsseldorf , Germany
| |
Collapse
|
10
|
Wadzinski TJ, Steinauer A, Hie L, Pelletier G, Schepartz A, Miller SJ. Rapid phenolic O-glycosylation of small molecules and complex unprotected peptides in aqueous solvent. Nat Chem 2018; 10:644-652. [PMID: 29713033 PMCID: PMC5964040 DOI: 10.1038/s41557-018-0041-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 03/06/2018] [Indexed: 12/25/2022]
Abstract
Glycosylated natural products and synthetic glycopeptides represent a significant and growing source of biochemical probes and therapeutic agents. However, methods that enable the aqueous glycosylation of endogenous amino acid functionality in peptides without the use of protecting groups are scarce. Here, we report a transformation that facilitates the efficient aqueous O-glycosylation of phenolic functionality in a wide range of small molecules, unprotected tyrosine, and tyrosine residues embedded within a range of complex, fully unprotected peptides. The transformation, which uses glycosyl fluoride donors and is promoted by Ca(OH)2, proceeds rapidly at room temperature in water, with good yields and selective formation of unique anomeric products depending on the stereochemistry of the glycosyl donor. High functional group tolerance is observed, and the phenol glycosylation occurs selectively in the presence of virtually all side chains of the proteinogenic amino acids with the singular exception of Cys. This method offers a highly selective, efficient, and operationally simple approach for the protecting-group-free synthesis of O-aryl glycosides and Tyr-O-glycosylated peptides in water.
Collapse
Affiliation(s)
| | | | - Liana Hie
- Department of Chemistry, Yale University, New Haven, CT, USA
| | | | | | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
11
|
Sangabathuni S, Murthy RV, Gade M, Bavireddi H, Toraskar S, Sonar MV, Ganesh KN, Kikkeri R. Modeling Glyco-Collagen Conjugates Using a Host-Guest Strategy To Alter Phenotypic Cell Migration and in Vivo Wound Healing. ACS NANO 2017; 11:11969-11977. [PMID: 29077384 DOI: 10.1021/acsnano.7b01789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The constructs and study of combinatorial libraries of structurally defined homologous extracellular matrix (ECM) glycopeptides can significantly accelerate the identification of cell surface markers involved in a variety of physiological and pathological processes. Herein, we present a simple and reliable host-guest approach to design a high-throughput glyco-collagen library to modulate the primary and secondary cell line migration process. 4-Amidoadamantyl-substituted collagen peptides and β-cyclodextrin appended with mono- or disaccharides were used to construct self-assembled glyco-collagen conjugates (GCCs), which were found to be thermally stable, with triple-helix structures and nanoneedles-like morphologies that altered cell migration processes. We also investigated the glycopeptide's mechanisms of action, which included interactions with integrins and cell signaling kinases. Finally, we report murine wound models to demonstrate the real-time application of GCCs. As a result of our observations, we claim that the host-guest model of ECM glycopeptides offers an effective tool to expedite identification of specific glycopeptides to manipulate cell morphogenesis, cell differentiation metastatic processes, and their biomedical applications.
Collapse
Affiliation(s)
- Sivakoti Sangabathuni
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | | | - Madhuri Gade
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | - Harikrishna Bavireddi
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | - Suraj Toraskar
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | - Mahesh V Sonar
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | - Krishna N Ganesh
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
12
|
Synthetic heparin and heparan sulfate: probes in defining biological functions. Curr Opin Chem Biol 2017; 40:152-159. [DOI: 10.1016/j.cbpa.2017.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 12/18/2022]
|
13
|
Caliskan OS, Sardan Ekiz M, Tekinay AB, Guler MO. Spatial Organization of Functional Groups on Bioactive Supramolecular Glycopeptide Nanofibers for Differentiation of Mesenchymal Stem Cells (MSCs) to Brown Adipogenesis. Bioconjug Chem 2016; 28:740-750. [DOI: 10.1021/acs.bioconjchem.6b00632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ozum S. Caliskan
- Institute of Materials Science
and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - Melis Sardan Ekiz
- Institute of Materials Science
and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - Ayse B. Tekinay
- Institute of Materials Science
and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - Mustafa O. Guler
- Institute of Materials Science
and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
14
|
Chen N, Deo C, Xie J. Synthesis of (2R)- and (2S)-aminooxy analogues of β-O-glucosylserine andN-oxyamide linked glycoconjugates. ChemistrySelect 2016. [DOI: 10.1002/slct.201600214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Na Chen
- PPSM; ENS Cachan; CNRS; Université Paris-Saclay; Cachan 94235 France
- School of Biomedical Sciences; Huaqiao University; Xiamen 361021 China
| | - Claire Deo
- PPSM; ENS Cachan; CNRS; Université Paris-Saclay; Cachan 94235 France
| | - Juan Xie
- PPSM; ENS Cachan; CNRS; Université Paris-Saclay; Cachan 94235 France
| |
Collapse
|
15
|
Liquid chromatography-tandem mass spectrometry-based fragmentation analysis of glycopeptides. Glycoconj J 2016; 33:261-72. [PMID: 26780731 DOI: 10.1007/s10719-016-9649-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 02/08/2023]
Abstract
The use of liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS(n)) for the glycoproteomic characterization of glycopeptides is a growing field of research. The N- and O-glycosylated peptides (N- and O-glycopeptides) analyzed typically originate from protease-digested glycoproteins where many of them are expected to be biomedically important. Examples of LC-MS(2) and MS(3) fragmentation strategies used to pursue glycan structure, peptide identity and attachment-site identification analyses of glycopeptides are described in this review. MS(2) spectra, using the CID and HCD fragmentation techniques of a complex biantennary N-glycopeptide and a core 1 O-glycopeptide, representing two examples of commonly studied glycopeptide types, are presented. A few practical tips for accomplishing glycopeptide analysis using reversed-phase LC-MS(n) shotgun proteomics settings, together with references to the latest glycoproteomic studies, are presented.
Collapse
|
16
|
Panda SS, Jones RA, Hall CD, Katritzky AR. Applications of Chemical Ligation in Peptide Synthesis via Acyl Transfer. Top Curr Chem (Cham) 2015; 362:229-65. [PMID: 25805142 DOI: 10.1007/128_2014_608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The utility of native chemical ligation (NCL) in the solution or solid phase synthesis of peptides, cyclic peptides, glycopeptides, and neoglycoconjugates is reviewed. In addition, the mechanistic details of inter- or intra-molecular NCLs are discussed from experimental and computational points of view.
Collapse
Affiliation(s)
- Siva S Panda
- Department of Chemistry, Center for Heterocyclic Compounds, University of Florida, Gainesville, FL, 32611-7200, USA,
| | | | | | | |
Collapse
|
17
|
Lindhorst TK. Multivalent glycosystems for nanoscience. Beilstein J Org Chem 2014; 10:2345-7. [PMID: 25383104 PMCID: PMC4222442 DOI: 10.3762/bjoc.10.244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 09/24/2014] [Indexed: 12/15/2022] Open
Affiliation(s)
- Thisbe K Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3/4, 24098 Kiel, Germany
| |
Collapse
|
18
|
Bello C, Farbiarz K, Möller JF, Becker CFW, Schwientek T. A quantitative and site-specific chemoenzymatic glycosylation approach for PEGylated MUC1 peptides. Chem Sci 2014. [DOI: 10.1039/c3sc52641k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
19
|
Meyer T, Knapp EW. Database of protein complexes with multivalent binding ability: Bival-bind. Proteins 2013; 82:744-51. [DOI: 10.1002/prot.24453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/15/2013] [Accepted: 10/21/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Tim Meyer
- Fachbereich Biologie Chemie; Pharmazie/Institute of Chemistry and Biochemistry, Freie Universität Berlin; 14195 Berlin Germany
| | - Ernst-Walter Knapp
- Fachbereich Biologie Chemie; Pharmazie/Institute of Chemistry and Biochemistry, Freie Universität Berlin; 14195 Berlin Germany
| |
Collapse
|
20
|
Aydillo C, Navo CD, Busto JH, Corzana F, Zurbano MM, Avenoza A, Peregrina JM. A Double Diastereoselective Michael-Type Addition as an Entry to Conformationally Restricted Tn Antigen Mimics. J Org Chem 2013; 78:10968-77. [DOI: 10.1021/jo4019396] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Carlos Aydillo
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Claudio D. Navo
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Jesús H. Busto
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Francisco Corzana
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - María M. Zurbano
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Alberto Avenoza
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Jesús M. Peregrina
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| |
Collapse
|
21
|
Siriwardena A, Pulukuri KK, Kandiyal PS, Roy S, Bande O, Ghosh S, Fernández JMG, Martin FA, Ghigo JM, Beloin C, Ito K, Woods RJ, Ampapathi RS, Chakraborty TK. Sugar-modified foldamers as conformationally defined and biologically distinct glycopeptide mimics. Angew Chem Int Ed Engl 2013; 52:10221-6. [PMID: 23943598 PMCID: PMC4167674 DOI: 10.1002/anie.201304239] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/02/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Aloysius Siriwardena
- Laboratoiredes Glucides, FRE-3517, Université de Picardie Jules Verne, Amiens 80039 (France)
| | - Kiran Kumar Pulukuri
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India)
| | - Pancham S. Kandiyal
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute (India), Lucknow 226031 (India)
| | - Saumya Roy
- Laboratoiredes Glucides, FRE-3517, Université de Picardie Jules Verne, Amiens 80039 (France)
| | - Omprakash Bande
- Laboratoiredes Glucides, FRE-3517, Université de Picardie Jules Verne, Amiens 80039 (France)
| | - Subhash Ghosh
- Organic Chemistry Division III, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007 (India)
| | - José Manuel Garcia Fernández
- Instituto de Investigaciones, Quìmicas(IIQ), CSIC-Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla (Spain)
| | - Fernando Ariel Martin
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15 (France)
| | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15 (France)
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15 (France)
| | - Keigo Ito
- The Complex Carbohydrate Research Center, The Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, 30602 GA (USA)
| | - Robert J. Woods
- The Complex Carbohydrate Research Center, The Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, 30602 GA (USA). The School of Chemistry, National University of Ireland, Galway University Road, Galway (Ireland)
| | - Ravi Sankar Ampapathi
- Centre for Nuclear Magnetic Resonance, SAIF, CSIR-Central Drug Research Institute (India), Lucknow 226031 (India)
| | - Tushar Kanti Chakraborty
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031 (India)
| |
Collapse
|
22
|
Siriwardena A, Pulukuri KK, Kandiyal PS, Roy S, Bande O, Ghosh S, Garcia Fernández JM, Ariel Martin F, Ghigo JM, Beloin C, Ito K, Woods RJ, Ampapathi RS, Chakraborty TK. Sugar-Modified Foldamers as Conformationally Defined and Biologically Distinct Glycopeptide Mimics. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Abstract
The key role of carbohydrates in many biological events has attracted the interest of the scientific community. This fact has demanded the access to new tools necessary to understand this role and the interaction of carbohydrates with their corresponding receptors, lectins. Glycodendrimers and glycodendritic structures in general, have demonstrated to be very efficient and interesting tools to intervene in those processes where carbohydrates participate. In this review, we discuss the different glycodendritic structures that have been used to interfere with DC-SIGN, a very attractive lectin involved in infection processes and in the regulation of the immune response.
Collapse
|