1
|
Calcaterra A, Mangiardi L, Delle Monache G, Quaglio D, Balducci S, Berardozzi S, Iazzetti A, Franzini R, Botta B, Ghirga F. The Pictet-Spengler Reaction Updates Its Habits. Molecules 2020; 25:E414. [PMID: 31963860 PMCID: PMC7024544 DOI: 10.3390/molecules25020414] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 12/31/2022] Open
Abstract
The Pictet-Spengler reaction (P-S) is one of the most direct, efficient, and variable synthetic method for the construction of privileged pharmacophores such as tetrahydro-isoquinolines (THIQs), tetrahydro-β-carbolines (THBCs), and polyheterocyclic frameworks. In the lustro (five-year period) following its centenary birthday, the P-S reaction did not exit the stage but it came up again on limelight with new features. This review focuses on the interesting results achieved in this period (2011-2015), analyzing the versatility of this reaction. Classic P-S was reported in the total synthesis of complex alkaloids, in combination with chiral catalysts as well as for the generation of libraries of compounds in medicinal chemistry. The P-S has been used also in tandem reactions, with the sequences including ring closing metathesis, isomerization, Michael addition, and Gold- or Brønsted acid-catalyzed N-acyliminium cyclization. Moreover, the combination of P-S reaction with Ugi multicomponent reaction has been exploited for the construction of highly complex polycyclic architectures in few steps and high yields. The P-S reaction has also been successfully employed in solid-phase synthesis, affording products with different structures, including peptidomimetics, synthetic heterocycles, and natural compounds. Finally, the enzymatic version of P-S has been reported for biosynthesis, biotransformations, and bioconjugations.
Collapse
Affiliation(s)
- Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Laura Mangiardi
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Giuliano Delle Monache
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Silvia Balducci
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Simone Berardozzi
- Department of Chemistry and Applied Biosciences, ETH-Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
| | - Antonia Iazzetti
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Roberta Franzini
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Francesca Ghirga
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| |
Collapse
|
2
|
Sun S, He M, VanPatten S, Al-Abed Y. Mechanistic insights into high mobility group box-1 (HMGb1)-induced Toll-like receptor 4 (TLR4) dimer formation. J Biomol Struct Dyn 2018; 37:3721-3730. [PMID: 30238832 DOI: 10.1080/07391102.2018.1526712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Supplemental data for this article can be accessed here.High mobility group box-1 (HMGb1), an endogenous danger-associated molecular pattern protein (DAMP) whose extracellular release has been associated with sterile injury and various inflammatory diseases and conditions, has been shown to be a valuable clinical drug target. Elucidation of the specific interactions with the HMGb1 receptor, Toll-like receptor 4 (TLR4) and adaptor protein myeloid differentiation factor-2 (MD-2), will lead to more precisely targeted therapeutics. We sought to examine detailed interactions and dynamics of the HMGb1 A-box and B-box fragments, as well as the intact protein using in silico protein-protein docking (ZDOCK, ZRANK) and molecular dynamics (Schrödinger Desmond, New York, NY). Mutagenesis and SPR-binding studies allowed us to draw further conclusions regarding the details of the HMGb1-TLR4-MD2 interaction and shed light on the reasons for the opposing biological activities of HMGb1 A-box and B-box fragments. From our findings, we hypothesize that disulfide A-box fragment binds as an anchor toward the TLR4-MD-2 but does not facilitate the TLR4 dimer formation, thereby competing with the HMGb1-binding site and preventing HMGb1-induced signaling and downstream inflammation, whereas the pro-inflammatory B-box fragment retains the MD-2 active conformation and binds to both TLR4 proteins in the complex to aid TLR4 dimer formation, which activates the intracellular signaling for downstream inflammatory pathways and cytokine release. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shan Sun
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY 11030 , USA
| | - Mingzhu He
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY 11030 , USA
| | - Sonya VanPatten
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY 11030 , USA
| | - Yousef Al-Abed
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY 11030 , USA
| |
Collapse
|
3
|
Martínez-Crespo L, Escudero-Adán EC, Costa A, Rotger C. The Role of N
-Methyl Squaramides in a Hydrogen-Bonding Strategy to Fold Peptidomimetic Compounds. Chemistry 2018; 24:17802-17813. [DOI: 10.1002/chem.201803930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/18/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Luís Martínez-Crespo
- Department of Chemistry; University of Balearic Islands; Cra Valldemossa km 7.5 07122 Palma Spain
| | - Eduardo C. Escudero-Adán
- Institute of Chemical Research of Catalonia (ICIQ); Av. Països Catalans 16 43007 Tarragona Spain
| | - Antonio Costa
- Department of Chemistry; University of Balearic Islands; Cra Valldemossa km 7.5 07122 Palma Spain
| | - Carmen Rotger
- Department of Chemistry; University of Balearic Islands; Cra Valldemossa km 7.5 07122 Palma Spain
| |
Collapse
|
4
|
Rossetti A, Sacchetti A, Gatti M, Pugliese A, Roda G. Rapid access to reverse-turn peptidomimetics by a three-component Ugi reaction of 3,4-dihydroisoquinoline. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2202-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Berthet M, Lebrun A, Martel A, Cheviet T, Martinez J, Parrot I. Oxa-diketopiperazines: Access and Conformational Analysis of Potential Turn Inducers. ChemistrySelect 2017. [DOI: 10.1002/slct.201701393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mathéo Berthet
- Institut des Biomolécules Max Mousseron, IBMM UMR-5247 CNRS; Université de Montpellier; ENSCM, CC17-03; Pl. E. Bataillon 34095 Montpellier Cedex 5 France
| | - Aurélien Lebrun
- Institut des Biomolécules Max Mousseron, IBMM UMR-5247 CNRS; Université de Montpellier; ENSCM, CC17-03; Pl. E. Bataillon 34095 Montpellier Cedex 5 France
| | - Arnaud Martel
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS; Université du Maine; Av. O. Messiaen 72085 LE MANS CEDEX 9 France
| | - Thomas Cheviet
- Institut des Biomolécules Max Mousseron, IBMM UMR-5247 CNRS; Université de Montpellier; ENSCM, CC17-03; Pl. E. Bataillon 34095 Montpellier Cedex 5 France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron, IBMM UMR-5247 CNRS; Université de Montpellier; ENSCM, CC17-03; Pl. E. Bataillon 34095 Montpellier Cedex 5 France
| | - Isabelle Parrot
- Institut des Biomolécules Max Mousseron, IBMM UMR-5247 CNRS; Université de Montpellier; ENSCM, CC17-03; Pl. E. Bataillon 34095 Montpellier Cedex 5 France
| |
Collapse
|
6
|
Martínez L, Martorell G, Sampedro Á, Ballester P, Costa A, Rotger C. Hydrogen Bonded Squaramide-Based Foldable Module Induces Both β- and α-Turns in Hairpin Structures of α-Peptides in Water. Org Lett 2015; 17:2980-3. [DOI: 10.1021/acs.orglett.5b01268] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Pablo Ballester
- Institut of Chemical Research of Catalonia (ICIQ), Avda. Països Catalans 16, 43007 Tarragona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig Lluís Compays 23, 08010 Barcelona, Spain
| | | | | |
Collapse
|
7
|
|
8
|
Nair RV, Baravkar SB, Ingole TS, Sanjayan GJ. Synthetic turn mimetics and hairpin nucleators: Quo Vadimus? Chem Commun (Camb) 2014; 50:13874-84. [PMID: 25051222 DOI: 10.1039/c4cc03114h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Structural mimicry of peptides has witnessed perceptible progress in the last three decades. Reverse turn and β-hairpin units are the smallest secondary structural motifs that are some of the most scrutinized functional cores of peptides and proteins. The practice of mimicking, without altering the function of the bioactive core, ranges from conformational locking of the basic skeleton to total replacement of structural architecture using synthetic analogues. Development of heterogeneous backbones--using unnatural residues in place of natural ones--has broadened further opportunities for efficient structural rigidification. This feature article endeavours to trail the path of progress achieved hitherto and envisage the possibilities that lie ahead in the development of synthetic turn mimetics and hairpin nucleators.
Collapse
Affiliation(s)
- Roshna V Nair
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.
| | | | | | | |
Collapse
|
9
|
Baek J, Kang SY, Im C, Park YS. Asymmetric Synthesis of 3,4,6-Trisubstituted 2,5-Diketopiperazines by Using Dynamic Kinetic Resolution of α-Bromo Tertiary Acetamides. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Jida M, Tourwé D, Ballet S. Highly stereoselective one-pot construction of trisubstituted tetrahydro-β-carboline-fused diketopiperazines: a synthetic route towards cialis analogues. RSC Adv 2014. [DOI: 10.1039/c4ra05981f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A facile and efficient synthetic method for the stereoselective preparation of trisubstituted tetrahydro-β-carboline-fused diketopiperazine derivatives is reported.
Collapse
Affiliation(s)
- Mouhamad Jida
- Research Group of Organic Chemistry
- Departments of Chemistry and Bio-engineering Sciences
- Vrije Universiteit Brussel
- B-1050 Brussels, Belgium
| | - Dirk Tourwé
- Research Group of Organic Chemistry
- Departments of Chemistry and Bio-engineering Sciences
- Vrije Universiteit Brussel
- B-1050 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry
- Departments of Chemistry and Bio-engineering Sciences
- Vrije Universiteit Brussel
- B-1050 Brussels, Belgium
| |
Collapse
|
11
|
Lesma G, Cecchi R, Cagnotto A, Gobbi M, Meneghetti F, Musolino M, Sacchetti A, Silvani A. Tetrahydro-β-carboline-based spirocyclic lactam as type II' β-turn: application to the synthesis and biological evaluation of somatostatine mimetics. J Org Chem 2013; 78:2600-10. [PMID: 23409740 DOI: 10.1021/jo302737j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The synthesis of novel spirocyclic lactams, embodying D-tryptophan (Trp) amino acid as the central core and acting as peptidomimetics, is presented. It relies on the strategic combination of Seebach's self-reproduction of chirality chemistry and Pictet-Spengler condensation as key steps. Investigation of the conformational behavior by molecular modeling, X-ray crystallography, and NMR and IR spectroscopies suggests very stable and highly predictable type II' β-turn conformations for all compounds. Relying on this feature, we also pursued their application to two potential mimetics of the hormone somatostatin, a pharmaceutically relevant natural peptide, which contains a Trp-based type II' β-turn pharmacophore.
Collapse
Affiliation(s)
- Giordano Lesma
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|