1
|
Zhang XY, Lu K, Guo BK, Shao YP, Wang H, Zhang FM, Tu YQ, Zhang XM. Catalytic Enantioselective Steglich-Type Rearrangement of Enol Lactones: Asymmetric Synthesis of Spirocyclic 1,3-Diketones. J Org Chem 2022; 87:15031-15041. [PMID: 36325975 DOI: 10.1021/acs.joc.2c01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An example of asymmetric Steglich-type rearrangement of enol lactones is reported. This highly enantioselective acyl transfer reaction is catalyzed by chiral isothiourea at ambient temperature and provides a useful synthetic approach to access enantioenriched spirotricyclic β,β'-diketones from a broad range of indanone or tetralone-derived lactones. Preliminary mechanistic studies suggest the initial formation of an N-acylated iminium cation intermediate that induces a following facial selective condensation.
Collapse
Affiliation(s)
- Xiao-Yan Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ka Lu
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Bao-Kuan Guo
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ya-Ping Shao
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing 100109, P. R. China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing 100109, P. R. China
| |
Collapse
|
2
|
Mondal R, Agbaria M, Nairoukh Z. Fluorinated Rings: Conformation and Application. Chemistry 2021; 27:7193-7213. [PMID: 33512034 DOI: 10.1002/chem.202005425] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/16/2022]
Abstract
The introduction of fluorine atoms into molecules and materials across many fields of academic and industrial research is now commonplace, owing to their unique properties. A particularly interesting feature is the impact of fluorine substitution on the relative orientation of a C-F bond when incorporated into organic molecules. In this Review, we will be discussing the conformational behavior of fluorinated aliphatic carbo- and heterocyclic systems. The conformational preference of each system is associated with various interactions introduced by fluorine substitution such as charge-dipole, dipole-dipole, and hyperconjugative interactions. The contribution of each interaction on the stabilization of the fluorinated alicyclic system, which manifests itself in low conformations, will be discussed in detail. The novelty of this feature will be demonstrated by presenting the most recent applications.
Collapse
Affiliation(s)
- Rajarshi Mondal
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Mohamed Agbaria
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| | - Zackaria Nairoukh
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| |
Collapse
|
3
|
Yang X, Majhi PK, Chai H, Liu B, Sun J, Liu T, Liu Y, Zhou L, Xu J, Liu J, Wang D, Zhao Y, Jin Z, Chi YR. Carbene-Catalyzed Enantioselective Aldol Reaction: Post-Aldol Stereochemistry Control and Formation of Quaternary Stereogenic Centers. Angew Chem Int Ed Engl 2021; 60:159-165. [PMID: 32931603 DOI: 10.1002/anie.202008369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/28/2020] [Indexed: 12/13/2022]
Abstract
The dominated approaches for asymmetric aldol reactions have primarily focused on the aldol carbon-carbon bond-forming events. Here we postulate and develop a new catalytic strategy that seeks to modulate the reaction thermodynamics and control the product enantioselectivities via post-aldol processes. Specifically, an NHC catalyst is used to activate a masked enolate substrate (vinyl carbonate) to promote the aldol reaction in a non-enantioselective manner. This reversible aldol event is subsequently followed by an enantioselective acylative kinetic resolution that is mediated by the same (chiral) NHC catalyst without introducing any additional substance. This post-aldol process takes care of the enantioselectivity issues and drives the otherwise reversible aldol reaction toward a complete conversion. The acylated aldol products bearing quaternary/tetrasubstituted carbon stereogenic centers are formed in good yields and high optical purities.
Collapse
Affiliation(s)
- Xing Yang
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Pankaj Kumar Majhi
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Huifang Chai
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Bin Liu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jun Sun
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Ting Liu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yonggui Liu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Liejin Zhou
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jun Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jiawei Liu
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Dongdong Wang
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yonggui Robin Chi
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| |
Collapse
|
4
|
Yang X, Majhi PK, Chai H, Liu B, Sun J, Liu T, Liu Y, Zhou L, Xu J, Liu J, Wang D, Zhao Y, Jin Z, Chi YR. Carbene‐Catalyzed Enantioselective Aldol Reaction: Post‐Aldol Stereochemistry Control and Formation of Quaternary Stereogenic Centers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202008369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xing Yang
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Pankaj Kumar Majhi
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Huifang Chai
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Bin Liu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
| | - Jun Sun
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
| | - Ting Liu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
| | - Yonggui Liu
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
| | - Liejin Zhou
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Jun Xu
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Jiawei Liu
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Dongdong Wang
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Yanli Zhao
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
| | - Yonggui Robin Chi
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
| |
Collapse
|
5
|
Liu Q, Batt DG, Weigelt CA, Yip S, Wu DR, Ruzanov M, Sack JS, Wang J, Yarde M, Li S, Shuster DJ, Xie JH, Sherry T, Obermeier MT, Fura A, Stefanski K, Cornelius G, Khandelwal P, Tino JA, Macor JE, Salter-Cid L, Denton R, Zhao Q, Dhar TGM. Novel Tricyclic Pyroglutamide Derivatives as Potent RORγt Inverse Agonists Identified using a Virtual Screening Approach. ACS Med Chem Lett 2020; 11:2510-2518. [PMID: 33335675 DOI: 10.1021/acsmedchemlett.0c00496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Employing a virtual screening approach, we identified the pyroglutamide moiety as a nonacid replacement for the cyclohexanecarboxylic acid group which, when coupled to our previously reported conformationally locked tricyclic core, provided potent and selective RORγt inverse agonists. Structure-activity relationship optimization of the pyroglutamide moiety led to the identification of compound 18 as a potent and selective RORγt inverse agonist, albeit with poor aqueous solubility. We took advantage of the tertiary carbinol group in 18 to synthesize a phosphate prodrug, which provided good solubility, excellent exposures in mouse PK studies, and significant efficacy in a mouse model of psoriasis.
Collapse
Affiliation(s)
- Qingjie Liu
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Douglas G. Batt
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Carolyn A. Weigelt
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Shiuhang Yip
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Dauh-Rurng Wu
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Max Ruzanov
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - John S. Sack
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Jinhong Wang
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Melissa Yarde
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Sha Li
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - David J. Shuster
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Jenny H. Xie
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Tara Sherry
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Mary T. Obermeier
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Aberra Fura
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Kevin Stefanski
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Georgia Cornelius
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Purnima Khandelwal
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Joseph A. Tino
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - John E. Macor
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Luisa Salter-Cid
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Rex Denton
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - Qihong Zhao
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| | - T. G. Murali Dhar
- Research and Early Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540-4000, United States
| |
Collapse
|
6
|
Oeschger R, Su B, Yu I, Ehinger C, Romero E, He S, Hartwig J. Diverse functionalization of strong alkyl C-H bonds by undirected borylation. Science 2020; 368:736-741. [PMID: 32409470 DOI: 10.1126/science.aba6146] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/05/2020] [Indexed: 12/21/2022]
Abstract
The selective functionalization of strong, typically inert carbon-hydrogen (C-H) bonds in organic molecules is changing synthetic chemistry. However, the undirected functionalization of primary C-H bonds without competing functionalization of secondary C-H bonds is rare. The borylation of alkyl C-H bonds has occurred previously with this selectivity, but slow rates required the substrate to be the solvent or in large excess. We report an iridium catalyst ligated by 2-methylphenanthroline with activity that enables, with the substrate as limiting reagent, undirected borylation of primary C-H bonds and, when primary C-H bonds are absent or blocked, borylation of strong secondary C-H bonds. Reactions at the resulting carbon-boron bond show how these borylations can lead to the installation of a wide range of carbon-carbon and carbon-heteroatom bonds at previously inaccessible positions of organic molecules.
Collapse
Affiliation(s)
- Raphael Oeschger
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Bo Su
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Isaac Yu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christian Ehinger
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Erik Romero
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sam He
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - John Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
7
|
Cativiela C, Ordóñez M, Viveros-Ceballos JL. Stereoselective synthesis of acyclic α,α-disubstituted α-amino acids derivatives from amino acids templates. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130875] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Chen Y. Advances in the Synthesis of Methylated Products through Indirect Approaches. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yantao Chen
- Medicinal Chemistry, Research and Early DevelopmentCardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca 43183 Gothenburg Sweden
| |
Collapse
|
9
|
Hofman GJ, Ottoy E, Light ME, Kieffer B, Martins JC, Kuprov I, Sinnaeve D, Linclau B. Synthesis and Conformational Properties of 3,4-Difluoro-l-prolines. J Org Chem 2019; 84:3100-3120. [PMID: 30777755 DOI: 10.1021/acs.joc.8b02920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fluorinated proline derivatives have found diverse applications in areas ranging from medicinal chemistry over structural biochemistry to organocatalysis. Depending on the stereochemistry of monofluorination at the proline 3- or 4-position, different effects on the conformational properties of proline (ring pucker, cis/ trans isomerization) are introduced. With fluorination at both 3- and 4-positions, matching or mismatching effects can occur depending on the relative stereochemistry. Here we report, in full, the syntheses and conformational properties of three out of the four possible 3,4-difluoro-l-proline diastereoisomers. The yet unreported conformational properties are described for (3 S,4 S)- and (3 R,4 R)-difluoro-l-proline, which are shown to bias ring pucker and cis/ trans ratios on the same order of magnitude as their respective monofluorinated progenitors, although with significantly faster amide cis/ trans isomerization rates. The reported analogues thus expand the scope of available fluorinated proline analogues as tools to tailor proline's distinct conformational and dynamical properties, allowing for the interrogation of its role in, for instance, protein stability or folding.
Collapse
Affiliation(s)
- Gert-Jan Hofman
- School of Chemistry , University of Southampton , Highfield, Southampton SO17 1BJ , United Kingdom.,Department of Organic and Macromolecular Chemistry , Ghent University , Campus Sterre, S4, Krijgslaan 281 , Ghent B-9000 , Belgium
| | - Emile Ottoy
- Department of Organic and Macromolecular Chemistry , Ghent University , Campus Sterre, S4, Krijgslaan 281 , Ghent B-9000 , Belgium
| | - Mark E Light
- School of Chemistry , University of Southampton , Highfield, Southampton SO17 1BJ , United Kingdom
| | - Bruno Kieffer
- Biomolecular NMR , University of Strasbourg , IGBMC, CNRS UMR 7104, INSERM U1258, 1 rue Laurent Fries/BP 10142 , Illkirch Cedex 67404 , France
| | - Jose C Martins
- Department of Organic and Macromolecular Chemistry , Ghent University , Campus Sterre, S4, Krijgslaan 281 , Ghent B-9000 , Belgium
| | - Ilya Kuprov
- School of Chemistry , University of Southampton , Highfield, Southampton SO17 1BJ , United Kingdom
| | - Davy Sinnaeve
- Department of Organic and Macromolecular Chemistry , Ghent University , Campus Sterre, S4, Krijgslaan 281 , Ghent B-9000 , Belgium
| | - Bruno Linclau
- School of Chemistry , University of Southampton , Highfield, Southampton SO17 1BJ , United Kingdom
| |
Collapse
|
10
|
Aufiero M, Gilmour R. Informing Molecular Design by Stereoelectronic Theory: The Fluorine Gauche Effect in Catalysis. Acc Chem Res 2018; 51:1701-1710. [PMID: 29894155 DOI: 10.1021/acs.accounts.8b00192] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The axioms of stereoelectronic theory constitute an atlas to navigate the contours of molecular space. All too rarely lauded, the advent and development of stereoelectronic theory has been one of organic chemistry's greatest triumphs. Inevitably, however, in the absence of a comprehensive treatise, many of the field's pioneers do not receive the veneration that they merit. Rather their legacies are the stereoelectronic pillars that persist in teaching and research. This ubiquity continues to afford practitioners of organic chemistry with an abundance of opportunities for creative endeavor in reaction design, in conceiving novel activation modes, in preorganizing intermediates, or in stabilizing productive transition states and products. Antipodal to steric governance, which mitigates destabilizing nonbonding interactions, stereoelectronic control allows well-defined, often complementary, conformations to be populated. Indeed, the prevalence of stabilizing hyperconjugative interactions in biosynthetic processes renders this approach to molecular preorganization decidedly biomimetic and, by extension, expansive. In this Account, the evolution and application of a simple donor-acceptor model based on the fluorine gauche effect is delineated. Founded on reinforcing hyperconjugative interactions involving C(sp3)-H bonding orbitals and C(sp3)-X antibonding orbitals [σC-H → σC-X*], this general stratagem has been used in conjunction with an array of secondary noncovalent interactions to achieve acyclic conformational control (ACC) in structures of interest. These secondary effects range from 1,3-allylic strain (A1,3) through to electrostatic charge-dipole and cation-π interactions. Synergy between these interactions ensures that rotation about strategic C(sp3)-C(sp3) bonds is subject to the stereoelectronic requirement for antiperiplanarity (180°). Logically, in a generic [X-CH2-CH2-Y] system (X, Y = electron withdrawing groups) conformations in which the two C(sp3)-X bonds are synclinal (i.e., gauche) are significantly populated. As such, simple donor-acceptor models are didactically and predictively powerful in achieving topological preorganization. In the case of the gauche effect, the low steric demand of fluorine ensures that the remaining substituents at the C(sp3) hybridized center are placed in a predictable area of molecular space: An exit vector analogy is thus appropriate. Furthermore, the intrinsic chemical stability of the C-F bond is advantageous, thus it may be considered as an inert conformational steering group: This juxtaposition of size and electronegativity renders fluorinated organic molecules unique among the organo-halogen series. Cognizant that the replacement of one fluorine atom in the difluoroethylene motif by another electron withdrawing group preserves the gauche conformation, it was reasoned that β-fluoroamines would be intriguing candidates for investigation. The burgeoning field of Lewis base catalysis, particularly via iminium ion activation, provided a timely platform from which to explore a postulated fluorine-iminium ion gauche effect. Necessarily, activation of this stereoelectronic effect requires a process of intramolecularization to generate the electron deficient neighboring group: Examples include protonation, condensation to generate iminium salts, or acylation. This process, akin to substrate binding, has obvious parallels with enzymatic catalysis, since it perturbs the conformational dynamics of the system [ synclinal-endo, antiperiplanar, synclinal-exo]. This Account details the development of conformationally predictable small molecules based on the [X-Cα-Cβ-F] motif through a logical process of molecular design and illustrates their synthetic value in enantioselective catalysis.
Collapse
Affiliation(s)
- Marialuisa Aufiero
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
11
|
Influence of gauche effect on uncharged oxime reactivators for the reactivation of tabun-inhibited AChE: quantum chemical and steered molecular dynamics studies. J Comput Aided Mol Des 2018; 32:793-807. [DOI: 10.1007/s10822-018-0130-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/04/2018] [Indexed: 02/06/2023]
|
12
|
Affiliation(s)
- Christian Thiehoff
- Institute for Organic Chemistry; Westfälische Wilhelms-Universität Münster; Corrensstr. 40 48149 Münster Germany
| | - Yannick P. Rey
- Institute for Organic Chemistry; Westfälische Wilhelms-Universität Münster; Corrensstr. 40 48149 Münster Germany
| | - Ryan Gilmour
- Institute for Organic Chemistry; Westfälische Wilhelms-Universität Münster; Corrensstr. 40 48149 Münster Germany
| |
Collapse
|
13
|
Vidhani DV, Krafft ME, Alabugin IV. Gold(I)-Catalyzed Allenyl Cope Rearrangement: Evolution from Asynchronicity to Trappable Intermediates Assisted by Stereoelectronic Switching. J Am Chem Soc 2016; 138:2769-79. [DOI: 10.1021/jacs.5b12920] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dinesh V. Vidhani
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Marie E. Krafft
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Igor V. Alabugin
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
14
|
|
15
|
Thiehoff C, Holland MC, Daniliuc C, Houk KN, Gilmour R. Can acyclic conformational control be achieved via a sulfur-fluorine gauche effect? Chem Sci 2015; 6:3565-3571. [PMID: 29511517 PMCID: PMC5659174 DOI: 10.1039/c5sc00871a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/16/2015] [Indexed: 01/04/2023] Open
Abstract
The gauche conformation of the 1,2-difluoroethane motif is known to involve stabilising hyperconjugative interactions between donor (bonding, σC-H) and acceptor (antibonding, σ*C-F) orbitals. This model rationalises the generic conformational preference of F-Cβ-Cα-X systems (φFCCX ≈ 60°), where X is an electron deficient substituent containing a Period 2 atom. Little is known about the corresponding Period 3 systems, such as sulfur and phosphorus, where multiple oxidation states are possible. Conformational analyses of β-fluorosulfides, -sulfoxides and -sulfones are disclosed here, thus extending the scope of the fluorine gauche effect to the 3rd Period (F-C-C-S(O) n ; φFCCS ≈ 60°). Synergy between experiment and computation has revealed that the gauche effect is only pronounced in structures bearing an electropositive vicinal sulfur atom (S+-O-, SO2).
Collapse
Affiliation(s)
- C Thiehoff
- Organisch Chemisches Institut, and Excellence Cluster EXC 1003 , Cells in Motion , Westfälische Wilhelms-Universität Münster , Corrensstrasse 40 , Münster , Germany .
| | - M C Holland
- Organisch Chemisches Institut, and Excellence Cluster EXC 1003 , Cells in Motion , Westfälische Wilhelms-Universität Münster , Corrensstrasse 40 , Münster , Germany .
- Department of Chemistry and Biochemistry , University of California Los Angeles , 607 Charles E. Young Drive East , Los Angeles 90095-1569 , USA .
| | - C Daniliuc
- Organisch Chemisches Institut, and Excellence Cluster EXC 1003 , Cells in Motion , Westfälische Wilhelms-Universität Münster , Corrensstrasse 40 , Münster , Germany .
| | - K N Houk
- Department of Chemistry and Biochemistry , University of California Los Angeles , 607 Charles E. Young Drive East , Los Angeles 90095-1569 , USA .
| | - R Gilmour
- Organisch Chemisches Institut, and Excellence Cluster EXC 1003 , Cells in Motion , Westfälische Wilhelms-Universität Münster , Corrensstrasse 40 , Münster , Germany .
- Excellence Cluster EXC 1003 , Cells in Motion , Westfälische Wilhelms-Universität Münster , Münster , Germany
| |
Collapse
|
16
|
Sugiishi T. Drastic Influence of Fluorine Substitution in the Organic Molecules on Regio- and Enantioselective Catalytic Reactions. J SYN ORG CHEM JPN 2015. [DOI: 10.5059/yukigoseikyokaishi.73.751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Sugiishi T, Matsugi M, Hamamoto H, Amii H. Enhancement of stereoselectivities in asymmetric synthesis using fluorinated solvents, auxiliaries, and catalysts. RSC Adv 2015. [DOI: 10.1039/c4ra11860j] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this review, the drastic changes using fluorinated solvents, additives, auxiliaries, and catalysts in catalytic asymmetric transformations are presented.
Collapse
Affiliation(s)
- Tsuyuka Sugiishi
- Division of Molecular Science
- Graduate School of Science and Technology
- Gunma University
- Kiryu
- Japan
| | | | | | - Hideki Amii
- Division of Molecular Science
- Graduate School of Science and Technology
- Gunma University
- Kiryu
- Japan
| |
Collapse
|
18
|
Holland MC, Metternich JB, Mück-Lichtenfeld C, Gilmour R. Cation–π interactions in iminium ion activation: correlating quadrupole moment & enantioselectivity. Chem Commun (Camb) 2015; 51:5322-5. [DOI: 10.1039/c4cc08520e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A cation–π interaction is operational in the addition of uncharged nucleophiles to iminium salts derived from MacMillan's 1st generation catalyst.
Collapse
Affiliation(s)
- M. C. Holland
- Organisch Chemisches Institut
- and Excellence Cluster EXC 1003
- Cells in Motion
- Westfälische Wilhelms-Universität Münster
- Münster
| | - J. B. Metternich
- Organisch Chemisches Institut
- and Excellence Cluster EXC 1003
- Cells in Motion
- Westfälische Wilhelms-Universität Münster
- Münster
| | - C. Mück-Lichtenfeld
- Organisch Chemisches Institut
- and Excellence Cluster EXC 1003
- Cells in Motion
- Westfälische Wilhelms-Universität Münster
- Münster
| | - R. Gilmour
- Organisch Chemisches Institut
- and Excellence Cluster EXC 1003
- Cells in Motion
- Westfälische Wilhelms-Universität Münster
- Münster
| |
Collapse
|
19
|
Yap DQJ, Cheerlavancha R, Lowe R, Wang S, Hunter L. Investigation of cis- and trans-4-Fluoroprolines as Enantioselective Catalysts in a Variety of Organic Transformations. Aust J Chem 2015. [DOI: 10.1071/ch14129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Stereoselective fluorination is known to rigidify the ring structure of l-proline, as a result of a combination of electrostatic and hyperconjugative effects associated with the C–F bond. This is a potential strategy for enhancing the enantioselectivity of proline-catalysed reactions. In this study, cis- and trans-4-fluoroprolines were investigated as catalysts in five different organic transformations, including examples of both enamine and iminium ion catalysis. Some significant differences in enantioselectivity were observed between the cis- and trans-isomers of the fluorinated catalysts, confirming that the ring pucker is important. However, no substantial improvements were observed relative to the parent catalyst, l-proline.
Collapse
|
20
|
Holland MC, Meemken F, Baiker A, Gilmour R. Chiral imidazolidinone and proline-derived surface modifiers for the Pt-catalysed asymmetric hydrogenation of activated ketones. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2014.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Gould E, Walden DM, Kasten K, Johnston RC, Wu J, Slawin AMZ, Mustard TJL, Johnston B, Davies T, Ha-Yeon Cheong P, Smith AD. Catalyst selective and regiodivergent O- to C- or N-carboxyl transfer of pyrazolyl carbonates: synthetic and computational studies. Chem Sci 2014. [DOI: 10.1039/c4sc00879k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Hu XG, Thomas DS, Griffith R, Hunter L. Stereoselective Fluorination Alters the Geometry of a Cyclic Peptide: Exploration of Backbone-Fluorinated Analogues of Unguisin A. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Hu XG, Thomas DS, Griffith R, Hunter L. Stereoselective fluorination alters the geometry of a cyclic peptide: exploration of backbone-fluorinated analogues of unguisin A. Angew Chem Int Ed Engl 2014; 53:6176-9. [PMID: 24848423 DOI: 10.1002/anie.201403071] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 04/04/2014] [Indexed: 01/23/2023]
Abstract
New methods for enhancing the efficiency of peptide cyclization, and for fine-tuning the conformations of cyclic peptides, are valuable from a drug development perspective. Herein stereoselective fluorination is investigated as a new strategy for achieving these goals. Four vicinal difluorinated analogues of the natural cyclic heptapeptide unguisin A have been efficiently synthesized. The analogues are found to adopt dramatically different secondary structures, controlled by the fluorine stereochemistry.
Collapse
Affiliation(s)
- Xiang-Guo Hu
- School of Chemistry, UNSW Australia, Sydney NSW 2052 (Australia) http://www.chemistry.unsw.edu.au/research/research-groups/hunter-group
| | | | | | | |
Collapse
|