1
|
Lee WM, Ahn SY, Lee GS, Park I, Kim J, Lee SH, Lee S, Kim CS. Discovery and Biosynthesis of Indole-Functionalized Metabolites from the Human Blood Bacterium, Paracoccus sanguinis, and Their Anti-Skin Aging Activity. JOURNAL OF NATURAL PRODUCTS 2025; 88:1120-1129. [PMID: 40314614 DOI: 10.1021/acs.jnatprod.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The human microbiome plays a crucial role in health and disease, with microbial metabolites acting as key mediators of physiological processes. While extensive research has focused on gut-derived microbes, the metabolic contributions of blood-derived bacteria remain underexplored. Here, we investigate the facultative anaerobe Paracoccus sanguinis, a Gram-negative bacterium isolated from human blood, and its metabolome, revealing insights into its potential impacts on health and disease. Using advanced analytical methods, we characterized 12 metabolites (1-12), including six novel compounds (1-3, 9, 10, and 12). Biosynthetic studies demonstrated that these metabolites are derived through enzymatic and nonenzymatic pathways. Functional evaluations revealed significant antiaging activities for 1, 6, and 11 in TNF-α-stimulated normal human dermal fibroblasts (NHDFs), including suppression of reactive oxygen species (ROS), inhibition of matrix metalloproteinase-1 (MMP-1) secretion, and reduction of inflammatory cytokines interleukin (IL)-6 and IL-8. Among the tested compounds, 11 exhibited the highest antiaging efficacy, highlighting its potential as a candidate for therapeutic applications targeting skin aging. This study elucidates the biosynthetic pathways of P. sanguinis metabolites and their antiskin aging activity, underscoring their potential in modulating skin health and offering novel insights into the functional roles of blood-derived microbiota in human health.
Collapse
Affiliation(s)
- Won Min Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Si-Young Ahn
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Gyu Sung Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - InWha Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jonghwan Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung Hwan Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Chung Sub Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Saeed AU, Rahman MU, Chen HF, Zheng J. Structural Insight of KSIII (β-Ketoacyl-ACP Synthase)-like Acyltransferase ChlB3 in the Biosynthesis of Chlorothricin. Molecules 2022; 27:molecules27196405. [PMID: 36234941 PMCID: PMC9573744 DOI: 10.3390/molecules27196405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Chlorothricin (CHL) belongs to a spirotetronate antibiotic family produced by Streptomyces antibioticus that inhibits pyruvate carboxylase and malate dehydrogenase. For the biosynthesis of CHL, ChlB3 plays a crucial role by introducing the 6-methylsalicylic acid (6MSA) moiety to ChlB2, an acyl carrier protein (ACP). However, the structural insight and catalytic mechanism of ChlB3 was unclear. In the current study, the crystal structure of ChlB3 was solved at 3.1 Å-resolution and a catalytic mechanism was proposed on the basis of conserved residues of structurally related enzymes. ChlB3 is a dimer having the same active sites as CerJ (a structural homologous enzyme) and uses a KSIII-like fold to work as an acyltransferase. The relaxed substrate specificity of ChlB3 was defined by its catalytic efficiencies (kcat/Km) for non-ACP tethered synthetic substrates such as 6MSA-SNAC, acetyl-SNAC, and cyclohexonyl-SNAC. ChlB3 successfully detached the 6MSA moiety from 6MSA-SNAC substrate and this hydrolytic activity demonstrated that ChlB3 has the potential to catalyze non-ACP tethered substrates. Structural comparison indicated that ChlB3 belongs to FabH family and showed 0.6–2.5 Å root mean square deviation (RMSD) with structural homologous enzymes. Molecular docking and dynamics simulations were implemented to understand substrate active site and structural behavior such as the open and closed conformation of the ChlB3 protein. The resultant catalytic and substrate recognition mechanism suggested that ChlB3 has the potential to use non-native substrates and minimize the labor of expressing ACP protein. This versatile acyltransferase activity may pave the way for manufacturing CHL variants and may help to hydrolyze several thioester-based compounds.
Collapse
Affiliation(s)
- Asad Ullah Saeed
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mueed Ur Rahman
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Center for Bioinformation Technology, Shanghai 200235, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence:
| |
Collapse
|
3
|
Grote M, Schulz F. Exploring the Promiscuous Enzymatic Activation of Unnatural Polyketide Extender Units in Vitro and in Vivo for Monensin Biosynthesis. Chembiochem 2019; 20:1183-1189. [DOI: 10.1002/cbic.201800734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Marius Grote
- Fakultät für Chemie und BiochemieRuhr-Universität Bochum Universitätsstrassee 150 44780 Bochum Germany
| | - Frank Schulz
- Fakultät für Chemie und BiochemieRuhr-Universität Bochum Universitätsstrassee 150 44780 Bochum Germany
| |
Collapse
|
4
|
Möller D, Kushnir S, Grote M, Ismail-Ali A, Koopmans KRM, Calo F, Heinrich S, Diehl B, Schulz F. Flexible enzymatic activation of artificial polyketide extender units by Streptomyces cinnamonensis into the monensin biosynthetic pathway. Lett Appl Microbiol 2018; 67:226-234. [PMID: 29927502 DOI: 10.1111/lam.13039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 11/30/2022]
Abstract
Streptomyces cinnamonensis A495 is a variant of the monensin producer which instead of the native polyether antibiotic gives rise to antibiotic and anti-tumour shunt-product premonensin. Through the supplementation of the fermentation medium with suitable precursors, premonensin can be derivatized via the incorporation of new-to-nature extender units into the biosynthetic machinery. Polyketide extender units require activation, typically in form of coenzyme A-thioesters. These are membrane impermeable and thus in the past an artificial mimic was employed. Here, we show the use and preliminary characterization of a highly substrate promiscuous new enzyme for the endogenous thioester formation in a Streptomyces strain. These intracellularly activated alternative extender units are significantly better incorporated into premonensin than the synthetically activated counterparts. SIGNIFICANCE AND IMPACT OF THE STUDY Polyketide natural products are of enormous relevance in medicine. The hit-rate in finding active compounds for the potential treatment of various diseases among this substance family of microbial origin is high. However, most polyketides require derivatization to render them suitable for the application. Of relevance in this field is the incorporation of artificial substances into the biogenesis of polyketides, hampered by both the microbial metabolism and the complexity of the enzymes involved. This manuscript describes the straightforward and selective biosynthetic incorporation of synthetic substances into a reduced polyketide and showcases a promising new enzyme to aid this purpose.
Collapse
Affiliation(s)
- D Möller
- Organische Chemie 1, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany
| | - S Kushnir
- Organische Chemie 1, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany
| | - M Grote
- Organische Chemie 1, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany
| | - A Ismail-Ali
- Organische Chemie 1, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany
| | - K R M Koopmans
- Organische Chemie 1, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany
| | - F Calo
- Organische Chemie 1, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany
| | - S Heinrich
- Organische Chemie 1, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany
| | - B Diehl
- Spectral Service, Köln, Germany
| | - F Schulz
- Organische Chemie 1, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
5
|
Musiol-Kroll EM, Wohlleben W. Acyltransferases as Tools for Polyketide Synthase Engineering. Antibiotics (Basel) 2018; 7:antibiotics7030062. [PMID: 30022008 PMCID: PMC6164871 DOI: 10.3390/antibiotics7030062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Polyketides belong to the most valuable natural products, including diverse bioactive compounds, such as antibiotics, anticancer drugs, antifungal agents, immunosuppressants and others. Their structures are assembled by polyketide synthases (PKSs). Modular PKSs are composed of modules, which involve sets of domains catalysing the stepwise polyketide biosynthesis. The acyltransferase (AT) domains and their “partners”, the acyl carrier proteins (ACPs), thereby play an essential role. The AT loads the building blocks onto the “substrate acceptor”, the ACP. Thus, the AT dictates which building blocks are incorporated into the polyketide structure. The precursor- and occasionally the ACP-specificity of the ATs differ across the polyketide pathways and therefore, the ATs contribute to the structural diversity within this group of complex natural products. Those features make the AT enzymes one of the most promising tools for manipulation of polyketide assembly lines and generation of new polyketide compounds. However, the AT-based PKS engineering is still not straightforward and thus, rational design of functional PKSs requires detailed understanding of the complex machineries. This review summarizes the attempts of PKS engineering by exploiting the AT attributes for the modification of polyketide structures. The article includes 253 references and covers the most relevant literature published until May 2018.
Collapse
Affiliation(s)
- Ewa Maria Musiol-Kroll
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Wolfgang Wohlleben
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
6
|
Li X, Pei G, Liu L, Chen L, Zhang W. Metabolomic analysis and lipid accumulation in a glucose tolerant Crypthecodinium cohnii strain obtained by adaptive laboratory evolution. BIORESOURCE TECHNOLOGY 2017; 235:87-95. [PMID: 28365353 DOI: 10.1016/j.biortech.2017.03.049] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 05/09/2023]
Abstract
Adaptive laboratory evolution (ALE) was commonly used for strain improvement. Crypthecodinium cohnii is known to accumulate lipids with a high fraction of docosahexaenoic acid (DHA). In order to improve DHA production under high substrate concentration, a glucose-tolerant C. cohnii strain was firstly obtained by ALE after 260 cycles for 650days with gradually increased glucose concentration. The results of lipids content showed that DHA-rich lipids accumulation in the evolved strain could increase by 15.49% at 45g/L glucose concentrations. To reveal mechanisms related to glucose tolerance of C. cohnii through ALE, metabolic profiles were then compared and the results showed that hub metabolites including glycerol, glutamic acid, malonic acid and succinic acid were positively regulated during ALE. The study demonstrated that metabolomic analysis complemented with ALE could be an effective and valuable strategy for basic mechanisms of molecular evolution and adaptive changes in C. cohnii.
Collapse
Affiliation(s)
- Xingrui Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science & Engineering, Tianjin, PR China
| | - Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science & Engineering, Tianjin, PR China
| | - Liangsen Liu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science & Engineering, Tianjin, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science & Engineering, Tianjin, PR China.
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science & Engineering, Tianjin, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, PR China
| |
Collapse
|
7
|
Franke J, Hertweck C. Biomimetic Thioesters as Probes for Enzymatic Assembly Lines: Synthesis, Applications, and Challenges. Cell Chem Biol 2016; 23:1179-1192. [PMID: 27693058 DOI: 10.1016/j.chembiol.2016.08.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/09/2016] [Accepted: 08/31/2016] [Indexed: 10/20/2022]
Abstract
Thioesters play essential roles in many biosynthetic pathways to fatty acids, esters, polyketides, and non-ribosomal peptides. Coenzyme A (CoA) and related phosphopantetheine thioesters are typically employed as activated acyl units for diverse C-C, C-O, and C-N coupling reactions. To study and control these enzymatic assembly lines in vitro and in vivo structurally simplified analogs such as N-acetylcysteamine (NAC) thioesters have been developed. This review gives an overview on experimental strategies enabled by synthetic NAC thioesters, such as the elucidation of complex biosynthetic pathways and enzyme mechanisms as well as precursor-directed biosynthesis and mutasynthesis. The review also summarizes synthetic protocols and protection group strategies to access these versatile synthetic tools, which are reactive and often unstable compounds. In addition, alternative phosphopantetheine thioester mimics are presented that can be used as protein tags or suicide inhibitors for protein crosslinking and off-loading probes to elucidate polyketide intermediates.
Collapse
Affiliation(s)
- Jakob Franke
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745 Jena, Germany; Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|
8
|
Singh G, Rani S, Arora A, Aulakh D, Wriedt M. Thioester-appended organosilatranes: synthetic investigations and application in the modification of magnetic silica surfaces. NEW J CHEM 2016. [DOI: 10.1039/c6nj00011h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thioester tethered organosilatranes were synthesized. The substituent effect on the absorption spectra and potential for binding with Cu2+were explored.
Collapse
Affiliation(s)
| | - Sunita Rani
- Department of Chemistry
- Panjab University
- Chandigarh
- India
| | - Aanchal Arora
- Department of Chemistry
- Panjab University
- Chandigarh
- India
| | - Darpandeep Aulakh
- Functional Materials Design & X-ray Diffraction Laboratory
- Department of Chemistry & Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Mario Wriedt
- Functional Materials Design & X-ray Diffraction Laboratory
- Department of Chemistry & Biomolecular Science
- Clarkson University
- Potsdam
- USA
| |
Collapse
|
9
|
Bravo-Rodriguez K, Klopries S, Koopmans KRM, Sundermann U, Yahiaoui S, Arens J, Kushnir S, Schulz F, Sanchez-Garcia E. Substrate Flexibility of a Mutated Acyltransferase Domain and Implications for Polyketide Biosynthesis. ACTA ACUST UNITED AC 2015; 22:1425-1430. [PMID: 26526102 DOI: 10.1016/j.chembiol.2015.02.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/16/2015] [Accepted: 02/23/2015] [Indexed: 11/19/2022]
Abstract
Polyketides are natural products frequently used for the treatment of various diseases, but their structural complexity hinders efficient derivatization. In this context, we recently introduced enzyme-directed mutasynthesis to incorporate non-native extender units into the biosynthesis of erythromycin. Modeling and mutagenesis studies led to the discovery of a variant of an acyltransferase domain in the erythromycin polyketide synthase capable of accepting a propargylated substrate. Here, we extend molecular rationalization of enzyme-substrate interactions through modeling, to investigate the incorporation of substrates with different degrees of saturation of the malonic acid side chain. This allowed the engineered biosynthesis of new erythromycin derivatives and the introduction of additional mutations into the AT domain for a further shift of the enzyme's substrate scope. Our approach yields non-native polyketide structures with functional groups that will simplify future derivatization approaches, and provides a blueprint for the engineering of AT domains to achieve efficient polyketide synthase diversification.
Collapse
Affiliation(s)
- Kenny Bravo-Rodriguez
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Stephan Klopries
- Fakultät für Chemie und Biochemie, Organische Chemie 1, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Kyra R M Koopmans
- Fakultät für Chemie und Biochemie, Organische Chemie 1, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Uschi Sundermann
- Dr. Fooke-Achterrath Laboratorien GmbH, Habichtweg 16, 41468 Neuss, Germany
| | - Samir Yahiaoui
- Université de Caen Basse-Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie, 14032 Caen, France
| | - Julia Arens
- Fakultät für Chemie und Biochemie, Organische Chemie 1, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Susanna Kushnir
- Fakultät für Chemie und Biochemie, Organische Chemie 1, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Frank Schulz
- Fakultät für Chemie und Biochemie, Organische Chemie 1, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Elsa Sanchez-Garcia
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
10
|
Wang F, Wang Y, Ji J, Zhou Z, Yu J, Zhu H, Su Z, Zhang L, Zheng J. Structural and functional analysis of the loading acyltransferase from avermectin modular polyketide synthase. ACS Chem Biol 2015; 10:1017-25. [PMID: 25581064 DOI: 10.1021/cb500873k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The loading acyltransferase (AT) domains of modular polyketide synthases (PKSs) control the choice of starter units incorporated into polyketides and are therefore attractive targets for the engineering of modular PKSs. Here, we report the structural and biochemical characterizations of the loading AT from avermectin modular PKS, which accepts more than 40 carboxylic acids as alternative starter units for the biosynthesis of a series of congeners. This first structural analysis of loading ATs from modular PKSs revealed the molecular basis for the relaxed substrate specificity. Residues important for substrate binding and discrimination were predicted by modeling a substrate into the active site. A mutant with altered specificity toward a panel of synthetic substrate mimics was generated by site-directed mutagenesis of the active site residues. The hydrolysis of the N-acetylcysteamine thioesters of racemic 2-methylbutyric acid confirmed the stereospecificity of the avermectin loading AT for an S configuration at the C-2 position of the substrate. Together, these results set the stage for region-specific modification of polyketides through active site engineering of loading AT domains of modular PKSs.
Collapse
Affiliation(s)
- Fen Wang
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Yanjie Wang
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Junjie Ji
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Zhan Zhou
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Jingkai Yu
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Hua Zhu
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Zhiguo Su
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Lixin Zhang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Jianting Zheng
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| |
Collapse
|
11
|
|
12
|
Bravo-Rodriguez K, Ismail-Ali AF, Klopries S, Kushnir S, Ismail S, Fansa EK, Wittinghofer A, Schulz F, Sanchez-Garcia E. Predicted incorporation of non-native substrates by a polyketide synthase yields bioactive natural product derivatives. Chembiochem 2014; 15:1991-7. [PMID: 25044264 DOI: 10.1002/cbic.201402206] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Indexed: 11/08/2022]
Abstract
The polyether ionophore monensin is biosynthesized by a polyketide synthase that delivers a mixture of monensins A and B by the incorporation of ethyl- or methyl-malonyl-CoA at its fifth module. Here we present the first computational model of the fifth acyltransferase domain (AT5mon ) of this polyketide synthase, thus affording an investigation of the basis of the relaxed specificity in AT5mon , insights into the activation for the nucleophilic attack on the substrate, and prediction of the incorporation of synthetic malonic acid building blocks by this enzyme. Our predictions are supported by experimental studies, including the isolation of a predicted derivative of the monensin precursor premonensin. The incorporation of non-native building blocks was found to alter the ratio of premonensins A and B. The bioactivity of the natural product derivatives was investigated and revealed binding to prenyl-binding protein. We thus show the potential of engineered biosynthetic polyketides as a source of ligands for biological macromolecules.
Collapse
Affiliation(s)
- Kenny Bravo-Rodriguez
- Department of Theoretical Chemistry, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dunn BJ, Khosla C. Engineering the acyltransferase substrate specificity of assembly line polyketide synthases. J R Soc Interface 2013; 10:20130297. [PMID: 23720536 DOI: 10.1098/rsif.2013.0297] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Polyketide natural products act as a broad range of therapeutics, including antibiotics, immunosuppressants and anti-cancer agents. This therapeutic diversity stems from the structural diversity of these small molecules, many of which are produced in an assembly line manner by modular polyketide synthases. The acyltransferase (AT) domains of these megasynthases are responsible for selection and incorporation of simple monomeric building blocks, and are thus responsible for a large amount of the resulting polyketide structural diversity. The substrate specificity of these domains is often targeted for engineering in the generation of novel, therapeutically active natural products. This review outlines recent developments that can be used in the successful engineering of these domains, including AT sequence and structural data, mechanistic insights and the production of a diverse pool of extender units. It also provides an overview of previous AT domain engineering attempts, and concludes with proposed engineering approaches that take advantage of current knowledge. These approaches may lead to successful production of biologically active 'unnatural' natural products.
Collapse
Affiliation(s)
- Briana J Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|