1
|
Yamaguchi S, Hirata K, Okamoto M, Shimosegawa E, Hatazawa J, Hirayama R, Kagawa N, Kishima H, Oriuchi N, Fujii M, Kobayashi K, Kobayashi H, Terasaka S, Nishijima KI, Kuge Y, Ito YM, Nishihara H, Tamaki N, Shiga T. Determination of brain tumor recurrence using 11 C-methionine positron emission tomography after radiotherapy. Cancer Sci 2021; 112:4246-4256. [PMID: 34061417 PMCID: PMC8486205 DOI: 10.1111/cas.15001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/28/2022] Open
Abstract
We conducted a prospective multicenter trial to compare the usefulness of 11C‐methionine (MET) and 18F‐fluorodeoxyglucose (FDG) positron emission tomography (PET) for identifying tumor recurrence. Patients with clinically suspected tumor recurrence after radiotherapy underwent both 11C‐MET and 18F‐FDG PET. When a lesion showed a visually detected uptake of either tracer, it was surgically resected for histopathological analysis. Patients with a lesion negative to both tracers were revaluated by magnetic resonance imaging (MRI) at 3 months after the PET studies. The primary outcome measure was the sensitivity of each tracer in cases with histopathologically confirmed recurrence, as determined by the McNemar test. Sixty‐one cases were enrolled, and 56 cases could be evaluated. The 38 cases where the lesions showed uptake of either 11C‐MET or 18F‐FDG underwent surgery; 32 of these cases were confirmed to be subject to recurrence. Eighteen cases where the lesions showed uptake of neither tracer received follow‐up MRI; the lesion size increased in one of these cases. Among the cases with histologically confirmed recurrence, the sensitivities of 11C‐MET PET and 18F‐FDG PET were 0.97 (32/33, 95% confidence interval [CI]: 0.85‐0.99) and 0.48 (16/33, 95% CI: 0.33‐0.65), respectively, and the difference was statistically significant (P < .0001). The diagnostic accuracy of 11C‐MET PET was significantly better than that of 18F‐FDG PET (87.5% vs. 69.6%, P = .033). No examination‐related adverse events were observed. The results of the study demonstrated that 11C‐MET PET was superior to 18F‐FDG PET for discriminating between tumor recurrence and radiation‐induced necrosis.
Collapse
Affiliation(s)
- Shigeru Yamaguchi
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Kenji Hirata
- Department of Nuclear Medicine, Hokkaido University Hospital, Sapporo, Japan.,Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Michinari Okamoto
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Eku Shimosegawa
- Department of Molecular Imaging in Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Jun Hatazawa
- Research Center for Nuclear Physics, Osaka University, Suita, Japan
| | - Ryuichi Hirayama
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Noboru Oriuchi
- Department of Nuclear Medicine, Fukushima Medical University Hospital, Fukushima, Japan.,Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| | - Masazumi Fujii
- Department of Neurosurgery, Fukushima Medical University, Fukushima, Japan
| | - Kentaro Kobayashi
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Kobayashi
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shunsuke Terasaka
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken-Ichi Nishijima
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan.,Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Yoichi M Ito
- Biostatistics Division, Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Nagara Tamaki
- Department of Nuclear Medicine, Hokkaido University Hospital, Sapporo, Japan.,Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tohru Shiga
- Department of Nuclear Medicine, Hokkaido University Hospital, Sapporo, Japan.,Department of Nuclear Medicine, Fukushima Medical University Hospital, Fukushima, Japan.,Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|