1
|
House EL, Kim SY, Johnston CJ, Groves AM, Hernady E, Misra RS, McGraw MD. Diacetyl Vapor Inhalation Induces Mixed, Granulocytic Lung Inflammation with Increased CD4 +CD25 + T Cells in the Rat. TOXICS 2021; 9:359. [PMID: 34941793 PMCID: PMC8707442 DOI: 10.3390/toxics9120359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
Diacetyl (DA) is a highly reactive alpha diketone associated with flavoring-related lung disease. In rodents, acute DA vapor exposure can initiate an airway-centric, inflammatory response. However, this immune response has yet to be fully characterized in the context of flavoring-related lung disease progression. The following studies were designed to characterize the different T cell populations within the lung following repetitive DA vapor exposures. Sprague-Dawley rats were exposed to 200 parts-per-million DA vapor for 5 consecutive days × 6 h/day. Lung tissue and bronchoalveolar lavage fluid (BALF) were analyzed for changes in histology by H&E and Trichrome stain, T cell markers by flow cytometry, total BALF cell counts and differentials, BALF IL17a and total protein immediately, 1 and 2 weeks post-exposure. Lung histology and BALF cell composition demonstrated mixed, granulocytic lung inflammation with bronchial lymphoid aggregates at all time points in DA-exposed lungs compared to air controls. While no significant change was seen in percent lung CD3+, CD4+, or CD8+ T cells, a significant increase in lung CD4+CD25+ T cells developed at 1 week that persisted at 2 weeks post-exposure. Further characterization of this CD4+CD25+ T cell population identified Foxp3+ T cells at 1 week that failed to persist at 2 weeks. Conversely, BALF IL-17a increased significantly at 2 weeks in DA-exposed rats compared to air controls. Lung CD4+CD25+ T cells and BALF IL17a correlated directly with BALF total protein and inversely with rat oxygen saturations. Repetitive DA vapor exposure at occupationally relevant concentrations induced mixed, granulocytic lung inflammation with increased CD4+CD25+ T cells in the rat lung.
Collapse
Affiliation(s)
- Emma L. House
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Division of Pediatric Pulmonology, Department of Pediatrics, School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (S.-Y.K.); (A.M.G.)
| | - So-Young Kim
- Division of Pediatric Pulmonology, Department of Pediatrics, School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (S.-Y.K.); (A.M.G.)
- Department of Environmental Medicine, School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (C.J.J.); (E.H.)
| | - Carl J. Johnston
- Department of Environmental Medicine, School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (C.J.J.); (E.H.)
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Angela M. Groves
- Division of Pediatric Pulmonology, Department of Pediatrics, School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (S.-Y.K.); (A.M.G.)
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Eric Hernady
- Department of Environmental Medicine, School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (C.J.J.); (E.H.)
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ravi S. Misra
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Matthew D. McGraw
- Division of Pediatric Pulmonology, Department of Pediatrics, School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (S.-Y.K.); (A.M.G.)
- Department of Environmental Medicine, School of Medicine & Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (C.J.J.); (E.H.)
| |
Collapse
|
2
|
Sue MJ, Yeap SK, Omar AR, Tan SW. Application of PCR-ELISA in molecular diagnosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:653014. [PMID: 24971343 PMCID: PMC4058250 DOI: 10.1155/2014/653014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/12/2014] [Indexed: 12/27/2022]
Abstract
Polymerase chain reaction-enzyme linked immunosorbent assay (PCR-ELISA) is an immunodetection method that can quantify PCR product directly after immobilization of biotinylated DNA on a microplate. This method, which detects nucleic acid instead of protein, is a much more sensitive method compared to conventional PCR method, with shorter analytical time and lower detection limit. Its high specificity and sensitivity, together with its semiquantitative ability, give it a huge potential to serve as a powerful detection tool in various industries such as medical, veterinary, and agricultural industries. With the recent advances in PCR-ELISA, it is envisaged that the assay is more widely recognized for its fast and sensitive detection limit which could improve overall diagnostic time and quality.
Collapse
Affiliation(s)
- Mei Jean Sue
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Sheau Wei Tan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| |
Collapse
|