1
|
Sukparangsi W, Thongphakdee A, Intarapat S. Avian Embryonic Culture: A Perspective of In Ovo to Ex Ovo and In Vitro Studies. Front Physiol 2022; 13:903491. [PMID: 35651873 PMCID: PMC9150135 DOI: 10.3389/fphys.2022.903491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
The avian embryos growing outside the natural eggshell (ex ovo) were observed since the early 19th century, and since then chick embryonic structures have revealed reaching an in-depth view of external and internal anatomy, enabling us to understand conserved vertebrate development. However, the internal environment within an eggshell (in ovo) would still be the ideal place to perform various experiments to understand the nature of avian development and to apply other biotechnology techniques. With the advent of genetic manipulation and cell culture techniques, avian embryonic parts were dissected for explant culture to eventually generate expandable cell lines (in vitro cell culture). The expansion of embryonic cells allowed us to unravel the transcriptional network for understanding pluripotency and differentiation mechanism in the embryos and in combination with stem cell technology facilitated the applications of avian culture to the next levels in transgenesis and wildlife conservation. In this review, we provide a panoramic view of the relationship among different cultivation platforms from in ovo studies to ex ovo as well as in vitro culture of cell lines with recent advances in the stem cell fields.
Collapse
Affiliation(s)
- Woranop Sukparangsi
- Department of Biology, Faculty of Science, Burapha University, Chon Buri, Thailand
| | - Ampika Thongphakdee
- Wildlife Reproductive Innovation Center, Research Department, Bureau of Conservation and Research, Zoological Park Organization of Thailand Under the Royal Patronage of H.M. the King, Bangkok, Thailand
| | - Sittipon Intarapat
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- *Correspondence: Sittipon Intarapat,
| |
Collapse
|
2
|
Marshall KM, Kanczler JM, Oreffo ROC. Evolving applications of the egg: chorioallantoic membrane assay and ex vivo organotypic culture of materials for bone tissue engineering. J Tissue Eng 2020; 11:2041731420942734. [PMID: 33194169 PMCID: PMC7594486 DOI: 10.1177/2041731420942734] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/26/2020] [Indexed: 01/03/2023] Open
Abstract
The chick chorioallantoic membrane model has been around for over a century, applied in angiogenic, oncology, dental and xenograft research. Despite its often perceived archaic, redolent history, the chorioallantoic membrane assay offers new and exciting opportunities for material and growth factor evaluation in bone tissue engineering. Currently, superior/improved experimental methodology for the chorioallantoic membrane assay are difficult to identify, given an absence of scientific consensus in defining experimental approaches, including timing of inoculation with materials and the analysis of results. In addition, critically, regulatory and welfare issues impact upon experimental designs. Given such disparate points, this review details recent research using the ex vivo chorioallantoic membrane assay and the ex vivo organotypic culture to advance the field of bone tissue engineering, and highlights potential areas of improvement for their application based on recent developments within our group and the tissue engineering field.
Collapse
Affiliation(s)
- Karen M Marshall
- Bone and Joint Research Group, Centre for Human
Development, Stem Cells and Regeneration, Institute of Developmental Sciences,
University of Southampton, Southampton, UK
| | - Janos M Kanczler
- Bone and Joint Research Group, Centre for Human
Development, Stem Cells and Regeneration, Institute of Developmental Sciences,
University of Southampton, Southampton, UK
| | - Richard OC Oreffo
- Bone and Joint Research Group, Centre for Human
Development, Stem Cells and Regeneration, Institute of Developmental Sciences,
University of Southampton, Southampton, UK
| |
Collapse
|
3
|
Lauridsen H, Gonzales S, Hedwig D, Perrin KL, Williams CJA, Wrege PH, Bertelsen MF, Pedersen M, Butcher JT. Extracting physiological information in experimental biology via Eulerian video magnification. BMC Biol 2019; 17:103. [PMID: 31831016 PMCID: PMC6907275 DOI: 10.1186/s12915-019-0716-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Videographic material of animals can contain inapparent signals, such as color changes or motion that hold information about physiological functions, such as heart and respiration rate, pulse wave velocity, and vocalization. Eulerian video magnification allows the enhancement of such signals to enable their detection. The purpose of this study is to demonstrate how signals relevant to experimental physiology can be extracted from non-contact videographic material of animals. RESULTS We applied Eulerian video magnification to detect physiological signals in a range of experimental models and in captive and free ranging wildlife. Neotenic Mexican axolotls were studied to demonstrate the extraction of heart rate signal of non-embryonic animals from dedicated videographic material. Heart rate could be acquired both in single and multiple animal setups of leucistic and normally colored animals under different physiological conditions (resting, exercised, or anesthetized) using a wide range of video qualities. Pulse wave velocity could also be measured in the low blood pressure system of the axolotl as well as in the high-pressure system of the human being. Heart rate extraction was also possible from videos of conscious, unconstrained zebrafish and from non-dedicated videographic material of sand lizard and giraffe. This technique also allowed for heart rate detection in embryonic chickens in ovo through the eggshell and in embryonic mice in utero and could be used as a gating signal to acquire two-phase volumetric micro-CT data of the beating embryonic chicken heart. Additionally, Eulerian video magnification was used to demonstrate how vocalization-induced vibrations can be detected in infrasound-producing Asian elephants. CONCLUSIONS Eulerian video magnification provides a technique to extract inapparent temporal signals from videographic material of animals. This can be applied in experimental and comparative physiology where contact-based recordings (e.g., heart rate) cannot be acquired.
Collapse
Affiliation(s)
- Henrik Lauridsen
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 304 Weill Hall, Ithaca, NY 14853-7202 USA
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Selina Gonzales
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 304 Weill Hall, Ithaca, NY 14853-7202 USA
- California State University, 333 S Twin Oaks Valley Rd, San Marcos, CA 92096 USA
| | - Daniela Hedwig
- Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850 USA
| | - Kathryn L. Perrin
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 32, 2000 Frederiksberg, Denmark
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 6, 1870 Frederiksberg C, Denmark
| | - Catherine J. A. Williams
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 32, 2000 Frederiksberg, Denmark
- Department of Bioscience, Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark
| | - Peter H. Wrege
- Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850 USA
| | - Mads F. Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 32, 2000 Frederiksberg, Denmark
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 6, 1870 Frederiksberg C, Denmark
| | - Michael Pedersen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Jonathan T. Butcher
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 304 Weill Hall, Ithaca, NY 14853-7202 USA
| |
Collapse
|
4
|
Stein MJ, Buckley MR, Manuele D, Gutierrez A, Loor JS, Nguyen PK, Kuo CK. Design of a Bioreactor to Assess the Effect of Passive Joint Loading in a Live Chick Embryo In Ovo. Tissue Eng Part C Methods 2019; 25:655-661. [PMID: 31547795 DOI: 10.1089/ten.tec.2019.0114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is increasing interest in understanding how mechanical cues (e.g., physical forces due to kicking and other movements) influence the embryological development of tissues and organs. For example, recent studies from our laboratory and others have used the chick embryo model to demonstrate that the compositional and mechanical properties of developing tendons are strongly regulated by embryo movement frequency. However, current research tools for manipulating embryological movements and in ovo (or in utero) mechanical forces are generally limited to chemical treatments that either paralyze or overstimulate muscles without allowing for precise control of physical cues. Thus, in this study, we introduce an instrument that enables application of passive, dynamic ankle flexion at prescribed amplitudes and frequencies in live, developing chick embryos. This device meets the design goals of allowing for precise (<1.5°) control of different waveforms of ankle motion at a physiologically relevant frequency (0.17 Hz) across a range of ankle angles (0-90° plantarflexion) with maintenance of embryo viability comparable to other methods. Impact Statement We describe the design and implementation of a novel bioreactor to precisely control ankle motion in a chick embryo within its physiological environment. The chick embryo has been used for decades to study mechanobiology of musculoskeletal tissue development and regeneration, but approaches have been limited to chemical treatments that either paralyze or overstimulate muscles without allowing for precise control of physical cues. Thus, this novel instrument is a major advancement over current research tools for manipulating chick embryological movements in ovo (or in utero).
Collapse
Affiliation(s)
- Matthew J Stein
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Mark R Buckley
- Department of Biomedical Engineering, University of Rochester, Rochester, New York.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| | - Dylan Manuele
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Andrew Gutierrez
- Department of Mechanical Engineering, University of Rochester, Rochester, New York
| | - Jose Suarez Loor
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Phong K Nguyen
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Catherine K Kuo
- Department of Biomedical Engineering, University of Rochester, Rochester, New York.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
5
|
Amini Z, Mahdavi-Shahri N, Lari R, Behnam Rassouli F. The effects of lead on the development of somites in chick embryos ( Gallus gallus domesticus) under in vitro conditions: a histological study. Toxicol Res (Camb) 2019; 8:373-380. [PMID: 31160971 PMCID: PMC6505386 DOI: 10.1039/c8tx00340h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Lead (Pb) is one of the most abundant toxic metals in the environment that can cause a variety of harmful effects. During embryonic development of vertebrates, somites are temporary organs that give rise to skeletal muscle, cartilage, tendon, endothelial cells, and dermis. In this study, we investigated the effects of lead on the development of somites and their derivatives in chick embryos under in vitro conditions. For this propose, fertilized eggs of Gallus gallus domesticus were incubated until they reached the stage of 15-20 somites. The somites and notochord were isolated and treated with different concentrations of lead acetate (500, 1000, 2000, and 4000 ng ml-1) for 72 h. Our results indicated that high concentrations of lead reduced the nucleus diameter, reduced the synthesis of collagen, inhibited the formation of the cartilage matrix in somite cells, and disturbed the formation and order of myotubes. In conclusion, the results of the current study for the first time indicated the disturbing effects of lead on the development of somites in the chick embryo. Our results revealed that lead disturbed the development of somites in the chick embryo, which suggested that at high concentrations it can cause a serious mortal danger to life.
Collapse
Affiliation(s)
- Zahra Amini
- Department of Biology , Faculty of Science , Ferdowsi University of Mashhad , Mashhad , Iran . ; Tel: (+98) 51-38805511
| | - Naser Mahdavi-Shahri
- Department of Biology , Faculty of Science , Ferdowsi University of Mashhad , Mashhad , Iran . ; Tel: (+98) 51-38805511
- Ferdowsi University of Mashhad , Faculty of Sciences , Institute of Applied Zoology, Research Department of Zoological Innovations (RDZI) , Mashhad , Iran
| | - Roya Lari
- Department of Biology , Faculty of Science , Ferdowsi University of Mashhad , Mashhad , Iran . ; Tel: (+98) 51-38805511
- Ferdowsi University of Mashhad , Faculty of Sciences , Institute of Applied Zoology, Research Department of Zoological Innovations (RDZI) , Mashhad , Iran
| | - Fatemeh Behnam Rassouli
- Department of Biology , Faculty of Science , Ferdowsi University of Mashhad , Mashhad , Iran . ; Tel: (+98) 51-38805511
| |
Collapse
|
6
|
Washausen S, Knabe W. Chicken embryos share mammalian patterns of apoptosis in the posterior placodal area. J Anat 2019; 234:551-563. [PMID: 30734277 DOI: 10.1111/joa.12945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2019] [Indexed: 01/04/2023] Open
Abstract
In the posterior placodal area (PPA) of C57BL/6N mice and primate-related Tupaia belangeri (Scandentia), apoptosis helps to establish morphologically separated otic and epibranchial placodes. Here, we demonstrate that basically identical patterns of apoptosis pass rostrocaudally through the Pax2+ PPA of chicken embryos. Interplacodal apoptosis eliminates unneeded cells either between the otic anlage and the epibranchial placodes 1, 2 and/or 3, respectively (type A), or between neighbouring epibranchial placodes (type B). These observations support the idea that in chicken embryos, as in mammals, interplacodal apoptosis serves to remove vestigial lateral line placodes (Washausen & Knabe, 2018, Biol Open 7, bio031815). A special case represents the recently discovered Pax2- /Sox2+ paratympanic organ (PTO) placode that has been postulated to be molecularly distinct from and developmentally independent of the ventrally adjacent first epibranchial (or 'geniculate') placode (O'Neill et al. 2012, Nat Commun 3, 1041). We show that Sox2+ (PTO placodal) cells seem to segregate from the Pax2+ geniculate placode, and that absence of Pax2 in the mature PTO placode is due to secondary loss. We further report that, between Hamburger-Hamilton (HH) stages HH14 and HH26, apoptosis in the combined anlage of the first epibranchial and PTO placodes is almost exclusively found within and/or immediately adjacent to the dorsally located PTO placode. Hence, apoptosis appears to support decision-making processes among precursor cells of the early developing PTO placode and, later, regression of the epibranchial placodes 2 and 3.
Collapse
Affiliation(s)
- Stefan Washausen
- Department Prosektur Anatomie, Westfälische Wilhelms-University, Münster, Germany
| | - Wolfgang Knabe
- Department Prosektur Anatomie, Westfälische Wilhelms-University, Münster, Germany
| |
Collapse
|
7
|
Andrews DDT, Franz-Odendaal TA. Organotypic Culture Method to Study the Development Of Embryonic Chicken Tissues. J Vis Exp 2018. [PMID: 30199010 DOI: 10.3791/57619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The embryonic chicken is commonly used as a reliable model organism for vertebrate development. Its accessibility and short incubation period makes it ideal for experimentation. Currently, the study of these developmental pathways in the chicken embryo is conducted by applying inhibitors and drugs at localized sites and at low concentrations using a variety of methods. In vitro tissue culturing is a technique that enables the study of tissues separated from the host organism, while simultaneously bypassing many of the physical limitations present when working with whole embryos, such as the susceptibility of embryos to high doses of potentially lethal chemicals. Here, we present an organotypic culturing protocol for culturing the embryonic chicken half head in vitro, which presents new opportunities for the examination of developmental processes beyond the currently established methods.
Collapse
|
8
|
Lu T, Cohen AL, Sanchez JT. In Ovo Electroporation in the Chicken Auditory Brainstem. J Vis Exp 2017. [PMID: 28654036 DOI: 10.3791/55628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Electroporation is a method that introduces genes of interest into biologically relevant organisms like the chicken embryo. It is long established that the chicken embryo is an effective research model for studying basic biological functions of auditory system development. More recently, the chicken embryo has become particularly valuable in studying gene expression, regulation and function associated with hearing. In ovo electroporation can be used to target auditory brainstem regions responsible for highly specialized auditory functions. These regions include the chicken nucleus magnocellularis (NM) and nucleus laminaris (NL). NM and NL neurons arise from distinct precursors of rhombomeres 5 and 6 (R5/R6). Here, we present in ovo electroporation of plasmid-encoded genes to study gene-related properties in these regions. We show a method for spatial and temporal control of gene expression that promote either gain or loss of functional phenotypes. By targeting auditory neural progenitor regions associated with R5/R6, we show plasmid transfection in NM and NL. Temporal regulation of gene expression can be achieved by adopting a tet-on vector system. This is a drug inducible procedure that expresses the genes of interest in the presence of doxycycline (Dox). The in ovo electroporation technique - together with either biochemical, pharmacological, and or in vivo functional assays - provides an innovative approach to study auditory neuron development and associated pathophysiological phenomena.
Collapse
Affiliation(s)
- Ting Lu
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University
| | - Ariel Loren Cohen
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University
| | - Jason Tait Sanchez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University; Knowles Hearing Research Center, Northwestern University; Department of Neurobiology, Northwestern University;
| |
Collapse
|
9
|
Huang W, Itayama M, Arai F, Furukawa KS, Ushida T, Kawahara T. An angiogenesis platform using a cubic artificial eggshell with patterned blood vessels on chicken chorioallantoic membrane. PLoS One 2017; 12:e0175595. [PMID: 28414752 PMCID: PMC5393577 DOI: 10.1371/journal.pone.0175595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/28/2017] [Indexed: 12/14/2022] Open
Abstract
The chorioallantoic membrane (CAM) containing tiny blood vessels is an alternative to large animals for studies involving angiogenesis and tissue engineering. However, there is no technique to design the direction of growing blood vessels on the CAM at the microscale level for tissue engineering experiments. Here, a methodology is provided to direct blood vessel formation on the surface of a three-dimensional egg yolk using a cubic artificial eggshell with six functionalized membranes. A structure on the lateral side of the eggshell containing a straight channel and an interlinked chamber was designed, and the direction and formation area of blood vessels with blood flow was artfully defined by channels with widths of 70-2000 μm, without sharply reducing embryo viability. The relationship between the size of interlinked chamber and the induction of blood vessels was investigated to establish a theory of design. Role of negative and positive pressure in the induction of CAM with blood vessels was investigated, and air pressure change in the culture chamber was measured to demonstrate the mechanism for blood vessel induction. Histological evaluation showed that components of CAM including chorionic membrane and blood vessels were induced into the channels. Based on our design theory, blood vessels were induced into arrayed channels, and channel-specific injection and screening were realized, which demonstrated proposed applications. The platform with position- and space-controlled blood vessels is therefore a powerful tool for biomedical research, which may afford exciting applications in studies involved in local stimulation of blood vessel networks and those necessary to establish a living system with blood flow from a beating heart.
Collapse
Affiliation(s)
- Wenjing Huang
- Department of Biological Functions Engineering, Kyushu Institute of Technology, Wakamatsu-ku, Kitakyushu, Japan
| | - Makoto Itayama
- Department of Biological Functions Engineering, Kyushu Institute of Technology, Wakamatsu-ku, Kitakyushu, Japan
| | - Fumihito Arai
- Department of Micro-Nano Systems Engineering, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Katsuko S. Furukawa
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Ushida
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- The Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomohiro Kawahara
- Department of Biological Functions Engineering, Kyushu Institute of Technology, Wakamatsu-ku, Kitakyushu, Japan
| |
Collapse
|
10
|
Evsen L, Doetzlhofer A. Gene Transfer into the Chicken Auditory Organ by In Ovo Micro-electroporation. J Vis Exp 2016. [PMID: 27167684 DOI: 10.3791/53864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chicken embryos are ideal model systems for studying embryonic development as manipulations of gene function can be conducted with relative ease in ovo. The inner ear auditory sensory organ is critical for our ability to hear. It houses a highly specialized sensory epithelium that consists of mechano-transducing hair cells (HCs) and surrounding glial-like supporting cells (SCs). Despite structural differences in the auditory organs, molecular mechanisms regulating the development of the auditory organ are evolutionarily conserved between mammals and aves. In ovo electroporation is largely limited to early stages at E1 - E3. Due to the relative late development of the auditory organ at E5, manipulations of the auditory organ by in ovo electroporation past E3 are difficult due to the advanced development of the chicken embryo at later stages. The method presented here is a transient gene transfer method for targeting genes of interest at stage E4 - E4.5 in the developing chicken auditory sensory organ via in ovo micro-electroporation. This method is applicable for gain- and loss-of-functions with conventional plasmid DNA-based expression vectors and can be combined with in ovo cell proliferation assay by adding EdU (5-ethynyl-2´-deoxyuridine) to the whole embryo at the time of electroporation. The use of green or red fluorescent protein (GFP or RFP) expression plasmids allows the experimenter to quickly determine whether the electroporation successfully targeted the auditory portion of the developing inner ear. In this method paper, representative examples of GFP electroporated specimens are illustrated; embryos were harvested 18 - 96 hr after electroporation and targeting of GFP to the pro-sensory area of the auditory organ was confirmed by RNA in situ hybridization. The method paper also provides an optimized protocol for the use of the thymidine analog EdU to analyze cell proliferation; an example of an EdU based cell proliferation assay that combines immuno-labeling and click EdU chemistry is provided.
Collapse
Affiliation(s)
- Lale Evsen
- The Solomon H. Snyder Department of Neuroscience, The Center for Sensory Biology, The Johns Hopkins University, School of Medicine
| | - Angelika Doetzlhofer
- The Solomon H. Snyder Department of Neuroscience, The Center for Sensory Biology, The Johns Hopkins University, School of Medicine;
| |
Collapse
|
11
|
Abstract
The avian embryo has a well-documented history as a model system for the study of neurogenesis, morphogenesis, and cell fate specification. This includes studies of the chicken inner ear that employ in ovo electroporation, in conjunction with the Tol2 system, to yield robust long-term transgene expression. Capitalizing on the success of this delivery method, we describe a modified version of the Tol2 expression vector that readily accepts the insertion of a microRNA-encoding artificial intron. This offers a strategy to investigate the possible roles of different candidate microRNAs in ear development by overexpression. Here, we describe the general design of this modified vector and the electroporation procedure. This approach is expected to facilitate phenotypic screening of candidate miRNAs to explore their bioactivity in vivo.
Collapse
|
12
|
Avian area vasculosa and CAM as rapid in vivo pro-angiogenic and antiangiogenic models. Methods Mol Biol 2015; 1214:185-96. [PMID: 25468605 DOI: 10.1007/978-1-4939-1462-3_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Angiogenesis, the development of new blood vessels from preexisting ones, is driven by coordinated signaling pathways governed by specific molecules, hemodynamic forces, and endothelial and periendothelial cells. The processes involve adhesion, migration, and survival machinery within the target endothelial and periendothelial cells. Factors that interfere with any of these processes may therefore influence angiogenesis either positively (pro-angiogenesis) or negatively (antiangiogenesis). The avian area vasculosa (AV) and the avian chorioallantoic membrane (CAM) are two useful tools for studying both angiogenesis and antiangiogenesis since they are amenable to both intravascular and topical administration of target, agents, are relatively rapid assays, and can be adapted very easily to study angiogenesis-dependent processes, such as tumor growth. Both models provide a physiological setting that permits investigation of pro-angiogenic and antiangiogenic agent interactions in vivo.
Collapse
|
13
|
Quantification of blood flow and topology in developing vascular networks. PLoS One 2014; 9:e96856. [PMID: 24823933 PMCID: PMC4019654 DOI: 10.1371/journal.pone.0096856] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 04/11/2014] [Indexed: 11/19/2022] Open
Abstract
Since fluid dynamics plays a critical role in vascular remodeling, quantification of the hemodynamics is crucial to gain more insight into this complex process. Better understanding of vascular development can improve prediction of the process, and may eventually even be used to influence the vascular structure. In this study, a methodology to quantify hemodynamics and network structure of developing vascular networks is described. The hemodynamic parameters and topology are derived from detailed local blood flow velocities, obtained by in vivo micro-PIV measurements. The use of such detailed flow measurements is shown to be essential, as blood vessels with a similar diameter can have a large variation in flow rate. Measurements are performed in the yolk sacs of seven chicken embryos at two developmental stages between HH 13+ and 17+. A large range of flow velocities (1 µm/s to 1 mm/s) is measured in blood vessels with diameters in the range of 25–500 µm. The quality of the data sets is investigated by verifying the flow balances in the branching points. This shows that the quality of the data sets of the seven embryos is comparable for all stages observed, and the data is suitable for further analysis with known accuracy. When comparing two subsequently characterized networks of the same embryo, vascular remodeling is observed in all seven networks. However, the character of remodeling in the seven embryos differs and can be non-intuitive, which confirms the necessity of quantification. To illustrate the potential of the data, we present a preliminary quantitative study of key network topology parameters and we compare these with theoretical design rules.
Collapse
|
14
|
Delloye-Bourgeois C, Jacquier A, Falk J, Castellani V. Use of pHluorin to assess the dynamics of axon guidance receptors in cell culture and in the chick embryo. J Vis Exp 2014:e50883. [PMID: 24458135 DOI: 10.3791/50883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
During development, axon guidance receptors play a crucial role in regulating axons sensitivity to both attractive and repulsive cues. Indeed, activation of the guidance receptors is the first step of the signaling mechanisms allowing axon tips, the growth cones, to respond to the ligands. As such, the modulation of their availability at the cell surface is one of the mechanisms that participate in setting the growth cone sensitivity. We describe here a method to precisely visualize the spatio-temporal cell surface dynamics of an axon guidance receptor both in vitro and in vivo in the developing chick spinal cord. We took advantage of the pH-dependent fluorescence property of a green fluorescent protein (GFP) variant to specifically detect the fraction of the axon guidance receptor that is addressed to the plasma membrane. We first describe the in vitro validation of such pH-dependent constructs and we further detail their use in vivo, in the chick spinal chord, to assess the spatio-temporal dynamics of the axon guidance receptor of interest.
Collapse
|
15
|
Improved method for ex ovo-cultivation of developing chicken embryos for human stem cell xenografts. Stem Cells Int 2013; 2013:960958. [PMID: 23554818 PMCID: PMC3608262 DOI: 10.1155/2013/960958] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/04/2013] [Indexed: 01/18/2023] Open
Abstract
The characterization of human stem cells for the usability in regenerative medicine is particularly based on investigations regarding their differentiation potential in vivo. In this regard, the chicken embryo model represents an ideal model organism. However, the access to the chicken embryo is only achievable by windowing the eggshell resulting in limited visibility and accessibility in subsequent experiments. On the contrary, ex ovo-culture systems avoid such negative side effects.
Here, we present an improved ex ovo-cultivation method enabling the embryos to survive 13 days in vitro. Optimized cultivation of chicken embryos resulted in a normal development regarding their size and weight. Our ex ovo-approach closely resembles the development of chicken embryos in ovo, as demonstrated by properly developed nervous system, bones, and cartilage at expected time points. Finally, we investigated the usability of our method for trans-species transplantation of adult stem cells by injecting human neural crest-derived stem cells into late Hamburger and Hamilton stages (HH26–HH28/E5—E6) of ex ovo-incubated embryos. We demonstrated the integration of human cells allowing experimentally easy investigation of the differentiation potential in the proper developmental context. Taken together, this ex ovo-method supports the prolonged cultivation of properly developing chicken embryos enabling integration studies of xenografted mammalian stem cells at late developmental stages.
Collapse
|
16
|
Vergara MN, Canto-Soler MV. Rediscovering the chick embryo as a model to study retinal development. Neural Dev 2012; 7:22. [PMID: 22738172 PMCID: PMC3541172 DOI: 10.1186/1749-8104-7-22] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/22/2012] [Indexed: 01/20/2023] Open
Abstract
The embryonic chick occupies a privileged place among animal models used in developmental studies. Its rapid development and accessibility for visualization and experimental manipulation are just some of the characteristics that have made it a vertebrate model of choice for more than two millennia. Until a few years ago, the inability to perform genetic manipulations constituted a major drawback of this system. However, the completion of the chicken genome project and the development of techniques to manipulate gene expression have allowed this classic animal model to enter the molecular age. Such techniques, combined with the embryological manipulations that this system is well known for, provide a unique toolkit to study the genetic basis of neural development. A major advantage of these approaches is that they permit targeted gene misexpression with extremely high spatiotemporal resolution and over a large range of developmental stages, allowing functional analysis at a level, speed and ease that is difficult to achieve in other systems. This article provides a general overview of the chick as a developmental model focusing more specifically on its application to the study of eye development. Special emphasis is given to the state of the art of the techniques that have made gene gain- and loss-of-function studies in this model a reality. In addition, we discuss some methodological considerations derived from our own experience that we believe will be beneficial to researchers working with this system.
Collapse
Affiliation(s)
- M Natalia Vergara
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Smith Building 3023, 400 N Broadway, Baltimore, MD 21287-9257, USA
| | - M Valeria Canto-Soler
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Smith Building 3023, 400 N Broadway, Baltimore, MD 21287-9257, USA
| |
Collapse
|
17
|
Abstract
Animal models have been used extensively in diabetes research. Studies on animal models have contributed to the discovery and purification of insulin, development of new therapeutic approaches, and progress in fundamental and clinical research. However, conventional rodent and large animal mammalian models face ethical, practical, or technical limitations. Therefore, it would be beneficial developing an alternative model for diabetes research which would overcome these limitations. Amongst other vertebrates, birds are phylogenically closer to mammals, and amongst birds, the chick has been used as one of the favored models in developmental biology, toxicology, cancer research, immunology, and drug testing. Chicken eggs are readily available, have a short incubation period and easily accessible embryos. Based on these inimitable advantages, the present review article aims to discuss the suitability of the chick as a model system to study specific aspects of diabetes. The review focuses on the application of i) chick pancreatic islets for screening of antidiabetic agents and for islet banking, (ii) shell-less chick embryo culture as a model to study hyperglycemia-induced malformations observed in mammalian embryos, and (iii) chick chorioallantoic membrane (CAM) to examine glucose-induced endothelial damage leading to inhibition of angiogenesis.
Collapse
Affiliation(s)
- Savita P Datar
- Department of Zoology, Sir Parshurambhau College, Pune 411030, India
| | | |
Collapse
|
18
|
Hu D, Marcucio RS. Assessing signaling properties of ectodermal epithelia during craniofacial development. J Vis Exp 2011:2557. [PMID: 21490566 DOI: 10.3791/2557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The accessibility of avian embryos has helped experimental embryologists understand the fates of cells during development and the role of tissue interactions that regulate patterning and morphogenesis of vertebrates (e.g., (1, 2, 3, 4)). Here, we illustrate a method that exploits this accessibility to test the signaling and patterning properties of ectodermal tissues during facial development. In these experiments, we create quail-chick (5) or mouse-chick (6) chimeras by transplanting the surface cephalic ectoderm that covers the upper jaw from quail or mouse onto either the same region or an ectopic region of chick embryos. The use of quail as donor tissue for transplantation into chicks was developed to take advantage of a nucleolar marker present in quail but not chick cells, thus allowing investigators to distinguish host and donor tissues (7). Similarly, a repetitive element is present in the mouse genome and is expressed ubiquitously, which allows us to distinguish host and donor tissues in mouse-chick chimeras (8). The use of mouse ectoderm as donor tissue will greatly extend our understanding of these tissue interactions, because this will allow us to test the signaling properties of ectoderm derived from various mutant embryos.
Collapse
Affiliation(s)
- Diane Hu
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA
| | | |
Collapse
|
19
|
Yalcin HC, Shekhar A, Rane AA, Butcher JT. An ex-ovo chicken embryo culture system suitable for imaging and microsurgery applications. J Vis Exp 2010:2154. [PMID: 21048670 DOI: 10.3791/2154] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Understanding the relationships between genetic and microenvironmental factors that drive normal and malformed embryonic development is fundamental for discovering new therapeutic strategies. Advancements in imaging technology have enabled quantitative investigation of the organization and maturing of the body plan, but later stage embryonic morphogenesis is less clear. Chicken embryos are an attractive vertebrate animal model system for this application because of its ease of culture and surgical manipulation. Early embryos can be cultured for a short time on filter paper rings, which enables complete optical access for cell patterning and fate studies. Studying advanced developmental processes such as cardiac morphogenesis are traditionally performed through a window of the eggshell, but this technique limits optical access due to window size. We previously developed a simple method to culture whole embryos ex-ovo on hexagonal weigh boats for up to 10 days, which enabled high resolution imaging via ultrasonography. These cultures were difficult to transport, limiting the types of imaging tools available for live experiments. We here present an improved shell-less culture system with a cost-effective, portable environmental chamber. Eggs were cracked onto a hammock created by a polyurethane membrane (cling wrap) affixed circumferentially to a plastic cup partially filled with sterile water. The dimensions of the circumference and depth of the hammock were both critical to maintain surface tension, while the mechanics of the hammock and water beneath helped dampen vibrations induced by transportation. A small footprint circulating water bath was also developed to enable continuous temperature control during experimentation. We demonstrate the ability to culture embryos in this way for at least 14 days without morphogenic defect or delay and employ this system in several microsurgical and imaging applications.
Collapse
|
20
|
Gerhart J, Neely C, Pfautz J, George-Weinstein M. Tracking and ablating subpopulations of epiblast cells in the chick embryo. Biol Proced Online 2008; 10:74-82. [PMID: 19461955 PMCID: PMC2683548 DOI: 10.1251/bpo145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/04/2008] [Accepted: 06/11/2008] [Indexed: 12/22/2022] Open
Abstract
The early chick embryo contains subpopulations of cells that express lineage-specific transcription factors. We have developed protocols to examine the role of these cells during development that involve labeling them for cell tracking purposes and ablating them within the epiblast. The procedures take advantage of the fact that subpopulations of epiblast cells differentially express cell surface antigens recognized by monoclonal antibodies. Embryos are removed from the shell and incubated on the yolk with an antibody. Cells that bind the antibody are either tagged with a fluorescent secondary antibody or lysed with complement. For long-term analyses, embryos are returned to a host shell and placed in an incubator. This method of whole embryo manipulation ex-ovo and incubation in-ovo supports normal development into the fetal period.
Collapse
Affiliation(s)
- Jacquelyn Gerhart
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA.
| | | | | | | |
Collapse
|
21
|
Korn MJ, Cramer KS. Placing growth factor-coated beads on early stage chicken embryos. J Vis Exp 2007:307. [PMID: 18989414 DOI: 10.3791/307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The neural tube expresses many proteins in specific spatiotemporal patterns during development. These proteins have been shown to be critical for cell fate determination, cell migration, and formation of neural circuits. Neuronal induction and patterning involve bone morphogenetic protein (BMP), sonic hedgehog (SHH), fibroblast growth factor (FGF), among others. In particular, the expression pattern of Fgf8 is in close proximity to regions expressing BMP4 and SHH. This expression pattern is consistent with developmental interactions that facilitate patterning in the telencephalon. Here we provide a visual demonstration of a method in which an in ovo preparation can be used to test the effects of Fgfs in the formation of the forebrain. Beads are coated with protein and placed in the developing neural tube to provide sustained exposure. Because the procedure uses small, carefully placed beads, it is minimally invasive and allows several beads to be placed within a single neural tube. Moreover, the method allows for continued development so that embryos can be analyzed at a more mature stage to detect changes in anatomy and in neural patterning. This simple but useful protocol allows for real time imaging. It provides a means to make spatially and temporally limited changes to endogenous protein levels.
Collapse
Affiliation(s)
- Matthew J Korn
- Department of Neurobiology and Behaviour, University of California, Irvine, CA, USA.
| | | |
Collapse
|