Pietra G, Dibattista M, Menini A, Reisert J, Boccaccio A. The Ca2+-activated Cl- channel TMEM16B regulates action potential firing and axonal targeting in olfactory sensory neurons.
J Gen Physiol 2016;
148:293-311. [PMID:
27619419 PMCID:
PMC5037344 DOI:
10.1085/jgp.201611622]
[Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/08/2016] [Indexed: 02/05/2023] Open
Abstract
TMEM16B is expressed in olfactory sensory neurons, but previous attempts to establish a physiological role in olfaction have been unsuccessful. Pietra et al. find that genetic ablation of TMEM16B results in defects in the olfactory behavior of mice and the cellular physiology of olfactory sensory neurons.
The Ca2+-activated Cl− channel TMEM16B is highly expressed in the cilia of olfactory sensory neurons (OSNs). Although a large portion of the odor-evoked transduction current is carried by Ca2+-activated Cl− channels, their role in olfaction is still controversial. A previous report (Billig et al. 2011. Nat. Neurosci.http://dx.doi.org/10.1038/nn.2821) showed that disruption of the TMEM16b/Ano2 gene in mice abolished Ca2+-activated Cl− currents in OSNs but did not produce any major change in olfactory behavior. Here we readdress the role of TMEM16B in olfaction and show that TMEM16B knockout (KO) mice have behavioral deficits in odor-guided food-finding ability. Moreover, as the role of TMEM16B in action potential (AP) firing has not yet been studied, we use electrophysiological recording methods to measure the firing activity of OSNs. Suction electrode recordings from isolated olfactory neurons and on-cell loose-patch recordings from dendritic knobs of neurons in the olfactory epithelium show that randomly selected neurons from TMEM16B KO mice respond to stimulation with increased firing activity than those from wild-type (WT) mice. Because OSNs express different odorant receptors (ORs), we restrict variability by using a mouse line that expresses a GFP-tagged I7 OR, which is known to be activated by heptanal. In response to heptanal, we measure dramatic changes in the firing pattern of I7-expressing neurons from TMEM16B KO mice compared with WT: responses are prolonged and display a higher number of APs. Moreover, lack of TMEM16B causes a markedly reduced basal spiking activity in I7-expressing neurons, together with an alteration of axonal targeting to the olfactory bulb, leading to the appearance of supernumerary I7 glomeruli. Thus, TMEM16B controls AP firing and ensures correct glomerular targeting of OSNs expressing I7. Altogether, these results show that TMEM16B does have a relevant role in normal olfaction.
Collapse