1
|
Zhang Z, Yao P, Fan S. Advances in regenerative rehabilitation in the rehabilitation of musculoskeletal injuries. Regen Med 2024; 19:345-354. [PMID: 38860852 PMCID: PMC11346529 DOI: 10.1080/17460751.2024.2357956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
In the rapidly advancing field of regenerative medicine, relying solely on cell transplantation alone may be insufficient for achieving functional recovery, and rehabilitation before and after transplantation is crucial. Regenerative rehabilitation functions by synergizing the therapeutic effects of regeneration and rehabilitation to maximize tissue regeneration and patient function. We used the keywords "regenerative rehabilitation" to search across the database for published works; this review discusses the development of regenerative rehabilitation for the treatment of musculoskeletal injuries. Rehabilitation has become a crucial component of regenerative medicine because it can enhance patients' functional activity and facilitate their early return to society. Experimental data increasingly demonstrates that rehabilitation interventions support the regeneration of transplanted tissues.
Collapse
Affiliation(s)
- Zirui Zhang
- University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
- Department of Rehabilitation Medicine, Chinese People's Liberation Army Joint Logistics Force 940 Hospital, 818, Anning East Road, Lanzhou, Gansu, 730000, PR China
| | - Pengfei Yao
- Department of Rehabilitation Medicine, Chinese People's Liberation Army Joint Logistics Force 940 Hospital, 818, Anning East Road, Lanzhou, Gansu, 730000, PR China
| | - Shuai Fan
- Department of Rehabilitation Medicine, The Ninth People's Hospital of Shanghai, Jiao Tong University, 639, Manufacturing Bureau Road, Huangpu District, Shanghai, 200000, PR China
| |
Collapse
|
2
|
3D Printing Adjustable Stiffness External Fixator for Mechanically Stimulated Healing of Tibial Fractures. BIOMED RESEARCH INTERNATIONAL 2022; 2021:8539416. [PMID: 34977247 PMCID: PMC8718297 DOI: 10.1155/2021/8539416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/06/2021] [Indexed: 11/17/2022]
Abstract
External fixation is a long-standing but well-established method, which has been widely used for the treatment of fractures. To obtain the maximum benefit from the mechanical stimulus, the stiffness of the external fixator should be adjusted properly throughout the treatment phase. Nevertheless, the lack of a valid dynamic adjustable fixation device impedes this possibility. Based on the stiffness adjustment tolerance of the healing callus, this paper proposes an active-dynamic stiffness adjustable external fixator design method to meet stiffness requirements at different stages of the tibial fracture healing process. A novel external fixator with an adjustable stiffness configuration was designed, and the finite element method was used to simulate the stress distribution between fixator and fracture gap. The stiffness adjustment tolerance was determined based on previous studies. According to this tolerance, the optimal block structure dismantling sequence was sought and the corresponding stiffness was calculated through topology optimization for the entire external fixator model. The appropriate amount of variable stiffness at the fracture gap was applied by dismantling the configuration of the block structure external fixator during the healing process. A novel patient-specific adjustable stiffness external fixator for mechanically stimulated tibial fracture reduction and therapy was proposed. This enables surgeons to tailor the construction of the external fixator frame to the clinical needs of each patient. The presented dismantling approach of the block structure to produce conformable stiffness provides a new clinical treatment strategy for tibial fractures.
Collapse
|
3
|
Faria FF, Gruhl CEM, Ferro RR, Rached RN, Soni JF, Trevilatto P. Finite Element Analysis of a Controlled Dynamization Device for External Circular Fixation. Rev Bras Ortop 2021; 56:36-41. [PMID: 33627897 PMCID: PMC7895635 DOI: 10.1055/s-0040-1721368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/17/2020] [Indexed: 11/01/2022] Open
Abstract
Objective To virtually prototype a device for external circular fixation of long bone fractures with controlled dynamization made of two different materials and predict their mechanical behavior by using the finite element analysis (FEA) method. Method A software was used for 3D modeling two metal parts closely attached by a sliding dovetail joint and a high-density silicone damper. Distinctive FEAs were simulated by considering two different materials (stainless steel or titanium), modes (locked or dynamized) and loading conditions (static/point or dynamic/0.5 sec) with uniform 150 kg axial load on top of the device. Results The finite elements (FEs) model presented 81,872 nodes and 45,922 elements. Considering stainless steel, the maximum stress peak (140.98 MPa) was reached with the device locked under static loading, while the greatest displacement (2.415 × 10 -3 mm) was observed with the device locked and under dynamic loading. Regarding titanium, the device presented the maximum stress peak (141.45 MPa) under static loading and with the device locked, while the greatest displacement (3.975 × 10 -3 mm) was found with the device locked and under dynamic loading. Conclusion The prototyped device played the role of stress support with acceptable deformation in both locked and dynamized modes and may be fabricated with both stainless steel and titanium.
Collapse
Affiliation(s)
- Fernando Ferraz Faria
- Escola de Ciências da Vida, Departamento de Ciências da Saúde, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Carlos Eduardo Miers Gruhl
- Escola de Ciências da Vida, Departamento de Ciências da Saúde, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Rafaela Rebonato Ferro
- Departamento de Ortopedia e Traumatologia, Hospital Universitário Cajuru, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Rodrigo Nunes Rached
- Programa de Pós-Graduação em Odontologia, Faculdade de Ciências da Vida, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Jamil Faissal Soni
- Programa de Pós-Graduação em Medicina, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Paula Trevilatto
- Programa de Pós-Graduação em Odontologia, Faculdade de Ciências da Vida, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| |
Collapse
|
4
|
Vasileva R, Chaprazov T. Preclinical studies on pleiotropic functions of erythropoietin on bone healing. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2020-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Erythropoietin (ЕPО) is a glycoprotein hormone, mainly known for its haemopoietic function. For orthopaedics, its pleiotropic effects – osteogenic and angiogenic potential, are of primary interest. The exact mechanism of EPO action is still unclear. The effects of EPO on bone healing were investigated through experiments with rats, mice, rabbits and pigs. Each of used models for experimental bone defects (calvarial models, long bone segmental defects, posterolateral spinal fusion and corticosteroid-induced femoral head osteonecrosis) has specific advantages and flaws. Obtaining specific and correct results is largely dependent on the used model. The brief evaluation of models could serve for standardisation of preclinical studies on bone regeneration.
Collapse
|
5
|
Ohara M, Itoh S, Fujiwara H, Oda R, Tsuchida S, Kohata K, Yamashita K, Kubo T. Efficacy of electrical polarization on a rat femoral bone defect model with a custom-made external fixator. Biomed Mater Eng 2019; 30:475-486. [PMID: 31771032 DOI: 10.3233/bme-191068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND We have developed a technology to electrically polarize living bone. OBJECTIVE The effects of stored electrical charge in electrical polarized bone on the facilitation of new bone formation were assayed. METHODS Stimulated depolarized current measurement was performed in electrically polarized and nonpolarized femora of SD rats. These bone specimens were implanted into bone defects of the rat femora and fixed with a custom-made external fixator. X-ray imaging of the implant was performed every week. After 3 weeks, micro-CT scanning was performed to evaluate the displacement rate. Histological observation was performed, and the occupancy ratio of the newly formed bone was calculated from tissue specimens stained with Villanueva's Goldner method. RESULTS There was a tendency for the displacement rate of the implant to be smaller and the occupancy ratio of the newly formed bone to be larger, especially at the distal end, in the polarized group compared with the nonpolarized group. The time of callus appearance was significantly earlier in the polarized group than in the nonpolarized group, and bridging callus grew from the distal to the proximal end. CONCLUSIONS Bone specimens can be electrically polarized, and the stored electrical charge can work effectively to facilitate new bone formation.
Collapse
Affiliation(s)
- Masato Ohara
- Department of Orthopedics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Soichiro Itoh
- Strategic Innovation Research Hub, Laboratory of Strength of Material and Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Hiroyoshi Fujiwara
- Department of Orthopedics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Ryo Oda
- Department of Orthopedics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Shinji Tsuchida
- Department of Orthopedics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Kazuhiro Kohata
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda, Tokyo, Japan
| | - Kimihiro Yamashita
- Strategic Innovation Research Hub, Laboratory of Strength of Material and Science, Teikyo University, Itabashi-ku, Tokyo, Japan.,Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda, Tokyo, Japan
| | - Toshikazu Kubo
- Department of Orthopedics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
6
|
Meeson R, Moazen M, Sanghani-Kerai A, Osagie-Clouard L, Coathup M, Blunn G. The influence of gap size on the development of fracture union with a micro external fixator. J Mech Behav Biomed Mater 2019; 99:161-168. [PMID: 31357063 PMCID: PMC6715773 DOI: 10.1016/j.jmbbm.2019.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/31/2019] [Accepted: 07/18/2019] [Indexed: 02/02/2023]
Abstract
Increasingly, the rat femoral fracture model is being used for preclinical investigations of fracture healing, however, the effect of gap size and its influence on mechanobiology is not well understood. We aimed to evaluate the influence of osteotomy gap on osteotomy healing between the previously published extremes of guaranteed union (0.5 mm) and non-union (3 mm) using this model. A femoral osteotomy in 12–14 week old female Wistar rats was stabilised with a micro fixator (titanium blocks, carbon fiber bars) with an osteotomy gap of 1.0 mm (n = 5), 1.5 mm (n = 7), 2.0 mm (n = 6). After five weeks, the left femur was retrieved. The osteotomy gap was scanned using X-ray microtomography and then histologically evaluated. The radiographic union rate (complete mineralised bone bridging across the osteotomy) was three times higher for the 1.0 mm than the 2.0 mm gap. The 1.0 mm gap had the largest callus (0.069μm3) and bone volume (0.035μm3). Callus and bone volume were approximately 50% smaller within the 2.0 mm gap. Using cadaveric rat femurs stabilised with the external fixator, day 0 mechanical assessment of construct stiffness was calculated on materials testing machine displacement vs load output. The construct stiffness for the 1.0, 1.5 and 2.0 mm gaps was 32.6 ± 5.4, 32.5 ± 2.4, and 32.4 ± 8.3 N/mm (p = 0.779). Interfragmentary strain (IFS) was calculated using the change in osteotomy gap displacement as measured using microstrain miniature differential reluctance transducer spanning the osteotomy gap. Increasing the gap size significantly reduced the IFS (p = 0.013). The mean ‘day 0’ IFS for the 1.0, 1.5 and 2.0 mm gaps were 11.2 ± 1.3, 8.4 ± 1.5 and 6.1 ± 1.2% respectively. A 1.5 mm gap resulted in a delayed fracture healing by 5 weeks and may represent a useful test environment for fracture healing therapy. Increasing gap size did not affect construct stiffness, but did reduce the ‘day 0’ IFS, with a doubling of non-union and halving of bone volume measured between 1.0 and 2.0 mm gaps.
Collapse
Affiliation(s)
- Richard Meeson
- Division of Surgery, University College London, Stanmore, UK; Royal Veterinary College, Hertfordshire, UK.
| | - Mehran Moazen
- Division of Surgery, University College London, Stanmore, UK; Mechanical Engineering, University College London, UK
| | | | | | - Melanie Coathup
- Division of Surgery, University College London, Stanmore, UK; University of Central Florida, USA
| | - Gordon Blunn
- Division of Surgery, University College London, Stanmore, UK; University of Portsmouth, Portsmouth, UK
| |
Collapse
|
7
|
Caplin JD, García AJ. Implantable antimicrobial biomaterials for local drug delivery in bone infection models. Acta Biomater 2019; 93:2-11. [PMID: 30654212 DOI: 10.1016/j.actbio.2019.01.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 01/05/2023]
Abstract
Increased use of implantable biomedical devices demonstrates their potential in treating a wide variety of ailments and disorders in bone trauma and orthopaedic, reconstructive, and craniofacial applications. However, the number of cases involving implant failure or malfunction due to bacterial infection have also increased in recent years. Implanted devices can facilitate the growth of bacteria as these micro-organisms have the potential to adhere to the implant and grow and develop to form biofilms. In an effort to better understand and mitigate these occurrences, biomaterials containing antimicrobial agents that can be released or presented within the local microenvironment have become an important area of research. In this review, we discuss critical factors that regulate antimicrobial therapy to sites of bone infection, such as key biomolecular considerations and platforms for delivery, as well as current in vivo models and current advances in the field. STATEMENT OF SIGNIFICANCE: This review outlines the important factors that are taken into consideration for the development of biomaterials for local delivery of therapeutics to the site of bone infections. An overview of important criteria for development of this model (such as type of bone defect, antimicrobial therapeutic, and delivery vehicle) are provided, along with current research that utilizes these considerations. Additionally, this review highlights recent clinical trials that have utilized antimicrobial therapeutics for treatment of osteomyelitis.
Collapse
|
8
|
Glatt V, Evans CH, Stoddart MJ. Regenerative rehabilitation: The role of mechanotransduction in orthopaedic regenerative medicine. J Orthop Res 2019; 37:1263-1269. [PMID: 30561813 PMCID: PMC6546504 DOI: 10.1002/jor.24205] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/28/2018] [Indexed: 02/04/2023]
Abstract
Regenerative rehabilitation is an emerging area of investigation that seeks to integrate regenerative medicine with rehabilitation medicine. It is based on the realization that combining these two areas of medicine at an early stage of treatment will produce a better clinical outcome than the traditional linear approach of first administering the elements of regeneration followed, after a delay, by rehabilitation. Indeed, in certain settings, a case can be made for initiating rehabilitation protocols before starting regenerative intervention. This review summarizes the contents of a workshop held during the 2018 annual meeting of the Orthopaedic Research Society. It introduced the concept of regenerative rehabilitation and then provided two orthopaedic examples drawn from the domains of cartilage repair and bone healing. Rehabilitation medicine can supply a variety of physical stimuli, including electrical stimulation, thermal stimulation and mechanical stimulation. Of these, mechanical stimulation has the most obvious relevance to orthopaedics. The mechano-responsiveness of cartilage and bone has been known for a long time, but is poorly understood and has led to only limited clinical application. Improved bioreactor designs that allow multi-axial loading enable new insights into the responsiveness of chondrocytes and chondroprogenitor cells to specific types of load, especially shear. Recent studies on the mechanobiology of bone healing show that modulating the mechanical environment of an experimental osseous lesion by a process of "Reverse Dynamization" soon after injury considerably enhances healing. Future studies are needed to probe the molecular mechanisms responsible for these phenomena and to translate these findings into clinical practice. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1263-1269, 2019.
Collapse
Affiliation(s)
- Vaida Glatt
- Department of Orthopaedic Surgery, University of Texas Health Science Center, San Antonio, Texas
| | | | | |
Collapse
|
9
|
Kerzner B, Martin HL, Weiser M, Fontana G, Russell N, Murphy WL, Lund EA, Doro CJ. A Reliable and Reproducible Critical-Sized Segmental Femoral Defect Model in Rats Stabilized with a Custom External Fixator. J Vis Exp 2019. [PMID: 30958483 DOI: 10.3791/59206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Orthopedic research relies heavily on animal models to study mechanisms of bone healing in vivo as well as investigate the new treatment techniques. Critical-sized segmental defects are challenging to treat clinically, and research efforts could benefit from a reliable, ambulatory small animal model of a segmental femoral defect. In this study, we present an optimized surgical protocol for the consistent and reproducible creation of a 5 mm critical diaphyseal defect in a rat femur stabilized with an external fixator. The diaphyseal ostectomy was performed using a custom jig to place 4 Kirschner wires bicortically, which were stabilized with an adapted external fixator device. An oscillating bone saw was used to create the defect. Either a collagen sponge alone or a collagen sponge soaked in rhBMP-2 was implanted into the defect, and the bone healing was monitored over 12 weeks using radiographs. After 12 weeks, rats were sacrificed, and histological analysis was performed on the excised control and treated femurs. Bone defects containing only collagen sponge resulted in non-union, while rhBMP-2 treatment yielded the formation of a periosteal callous and new bone remodeling. Animals recovered well after implantation, and external fixation proved successful in stabilizing the femoral defects over 12 weeks. This streamlined surgical model could be readily applied to study bone healing and test new orthopedic biomaterials and regenerative therapies in vivo.
Collapse
Affiliation(s)
- Benjamin Kerzner
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison
| | - Hannah L Martin
- Department of Biomedical Engineering, University of Wisconsin-Madison
| | - Michael Weiser
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison
| | - Gianluca Fontana
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison;
| | - Nicholas Russell
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison
| | - William L Murphy
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison; Department of Biomedical Engineering, University of Wisconsin-Madison
| | | | - Christopher J Doro
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison
| |
Collapse
|
10
|
Abstract
OBJECTIVES To develop and validate an unbiased, accurate, convenient, and inexpensive means of determining when an osseous defect has healed and recovered sufficient strength to allow weight bearing. METHODS A novel image processing software algorithm was created to analyze the radiographic images and produce a metric designed to reflect the bone strength. We used a rat femoral segmental defect model that provides a range of healing responses from complete union to nonunion. Femora were examined by x-ray, micro-computed tomography and mechanical testing. Accurate simulated radiographic images at different incident x-ray beam angles were produced from the micro-computed tomography data files. RESULTS The software-generated metric (SC) showed high levels of correlation with both the mechanical strength (τMech) and the polar moment of inertia (pMOI), with the mechanical testing data having the highest association. The optimization analysis yielded optimal oblique angles θB of 125 degrees for τMech and 50 degrees for pMOI. The Pearson R values for the optimized model were 0.71 and 0.64 for τMech and pMOI, respectively. Further validation using true radiographs also demonstrated that the metric was accurate and that the simulations were realistic. CONCLUSIONS The preliminary findings suggest a very promising methodology to assess bone fracture healing using conventional radiography. With radiographs acquired at appropriate incident angles, it proved possible to accurately calculate the degree of healing and the mechanical strength of the bone. Further research is necessary to refine this approach and determine whether it translates to the human clinical setting.
Collapse
|
11
|
McGovern JA, Griffin M, Hutmacher DW. Animal models for bone tissue engineering and modelling disease. Dis Model Mech 2018; 11:11/4/dmm033084. [PMID: 29685995 PMCID: PMC5963860 DOI: 10.1242/dmm.033084] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering and its clinical application, regenerative medicine, are instructing multiple approaches to aid in replacing bone loss after defects caused by trauma or cancer. In such cases, bone formation can be guided by engineered biodegradable and nonbiodegradable scaffolds with clearly defined architectural and mechanical properties informed by evidence-based research. With the ever-increasing expansion of bone tissue engineering and the pioneering research conducted to date, preclinical models are becoming a necessity to allow the engineered products to be translated to the clinic. In addition to creating smart bone scaffolds to mitigate bone loss, the field of tissue engineering and regenerative medicine is exploring methods to treat primary and secondary bone malignancies by creating models that mimic the clinical disease manifestation. This Review gives an overview of the preclinical testing in animal models used to evaluate bone regeneration concepts. Immunosuppressed rodent models have shown to be successful in mimicking bone malignancy via the implantation of human-derived cancer cells, whereas large animal models, including pigs, sheep and goats, are being used to provide an insight into bone formation and the effectiveness of scaffolds in induced tibial or femoral defects, providing clinically relevant similarity to human cases. Despite the recent progress, the successful translation of bone regeneration concepts from the bench to the bedside is rooted in the efforts of different research groups to standardise and validate the preclinical models for bone tissue engineering approaches.
Collapse
Affiliation(s)
- Jacqui Anne McGovern
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane 4059, Australia
| | - Michelle Griffin
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, NW3 2QG, UK.,UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, WC1E 6BT, UK
| | - Dietmar Werner Hutmacher
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane 4059, Australia .,George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.,Institute for Advanced Study, Technical University Munich, Garching 85748, Germany
| |
Collapse
|
12
|
Histing T, Menger MD, Pohlemann T, Matthys R, Fritz T, Garcia P, Klein M. An Intramedullary Locking Nail for Standardized Fixation of Femur Osteotomies to Analyze Normal and Defective Bone Healing in Mice. J Vis Exp 2016. [PMID: 27911364 DOI: 10.3791/54472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Bone healing models are essential to the development of new therapeutic strategies for clinical fracture treatment. Furthermore, mouse models are becoming more commonly used in trauma research. They offer a large number of mutant strains and antibodies for the analysis of the molecular mechanisms behind the highly differentiated process of bone healing. To control the biomechanical environment, standardized and well-characterized osteosynthesis techniques are mandatory in mice. Here, we report on the design and use of an intramedullary nail to stabilize open femur osteotomies in mice. The nail, made of medical-grade stainless steel, provides high axial and rotational stiffness. The implant further allows the creation of defined, constant osteotomy gap sizes from 0.00 mm to 2.00 mm. Intramedullary locking nail stabilization of femur osteotomies with gap sizes of 0.00 mm and 0.25 mm result in adequate bone healing through endochondral and intramembranous ossification. Stabilization of femur osteotomies with a gap size of 2.00 mm results in atrophic non-union. Thus, the intramedullary locking nail can be used in healing and non-healing models. A further advantage of the use of the nail compared to other open bone healing models is the possibility to adequately fix bone substitutes and scaffolds in order to study the process of osseous integration. A disadvantage of the use of the intramedullary nail is the more invasive surgical procedure, inherent to all open procedures compared to closed models. A further disadvantage may be the induction of some damage to the intramedullary cavity, inherent to all intramedullary stabilization techniques compared to extramedullary stabilization procedures.
Collapse
Affiliation(s)
- Tina Histing
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University;
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| | | | - Tobias Fritz
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| | - Patric Garcia
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| | - Moritz Klein
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University
| |
Collapse
|
13
|
Glatt V, Bartnikowski N, Quirk N, Schuetz M, Evans C. Reverse Dynamization: Influence of Fixator Stiffness on the Mode and Efficiency of Large-Bone-Defect Healing at Different Doses of rhBMP-2. J Bone Joint Surg Am 2016; 98:677-87. [PMID: 27098327 PMCID: PMC4832588 DOI: 10.2106/jbjs.15.01027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Reverse dynamization is a technology for enhancing the healing of osseous defects. With use of an external fixator, the axial stiffness across the defect is initially set low and subsequently increased. The purpose of the study described in this paper was to explore the efficacy of reverse dynamization under different conditions. METHODS Rat femoral defects were stabilized with external fixators that allowed the stiffness to be modulated on living animals. Recombinant human bone morphogenetic protein-2 (rhBMP-2) was implanted into the defects on a collagen sponge. Following a dose-response experiment, 5.5 μg of rhBMP-2 was placed into the defect under conditions of very low (25.4-N/mm), low (114-N/mm), medium (185-N/mm), or high (254-N/mm) stiffness. Reverse dynamization was evaluated with 2 different starting stiffnesses: low (114 N/mm) and very low (25.4 N/mm). In both cases, high stiffness (254 N/mm) was imposed after 2 weeks. Healing was assessed with radiographs, micro-computed tomography (μCT), histological analysis, and mechanical testing. RESULTS In the absence of dynamization, the medium-stiffness fixators provided the best healing. Reverse dynamization starting with very low stiffness was detrimental to healing. However, with low initial stiffness, reverse dynamization considerably improved healing with minimal residual cartilage, enhanced cortication, increased mechanical strength, and smaller callus. Histological analysis suggested that, in all cases, healing provoked by rhBMP-2 occurred by endochondral ossification. CONCLUSIONS These data confirm the potential utility of reverse dynamization as a way of improving bone healing but indicate that the stiffness parameters need to be selected carefully. CLINICAL RELEVANCE Reverse dynamization may reduce the amount of rhBMP-2 needed to induce healing of recalcitrant osseous lesions, reduce the time to union, and decrease the need for prolonged external fixation.
Collapse
Affiliation(s)
- Vaida Glatt
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Queensland, Australia,E-mail address for V. Glatt:
| | - Nicole Bartnikowski
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nicholas Quirk
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Queensland, Australia,Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota
| | - Michael Schuetz
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Queensland, Australia,Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Christopher Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|