1
|
Footner E, Firipis K, Liu E, Baker C, Foley P, Kapsa RMI, Pirogova E, O'Connell C, Quigley A. Layer-by-Layer Analysis of In Vitro Skin Models. ACS Biomater Sci Eng 2023; 9:5933-5952. [PMID: 37791888 DOI: 10.1021/acsbiomaterials.3c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In vitro human skin models are evolving into versatile platforms for the study of skin biology and disorders. These models have many potential applications in the fields of drug testing and safety assessment, as well as cosmetic and new treatment development. The development of in vitro skin models that accurately mimic native human skin can reduce reliance on animal models and also allow for more precise, clinically relevant testing. Recent advances in biofabrication techniques and biomaterials have led to the creation of increasingly complex, multilayered skin models that incorporate important functional components of skin, such as the skin barrier, mechanical properties, pigmentation, vasculature, hair follicles, glands, and subcutaneous layer. This improved ability to recapitulate the functional aspects of native skin enhances the ability to model the behavior and response of native human skin, as the complex interplay of cell-to-cell and cell-to-material interactions are incorporated. In this review, we summarize the recent developments in in vitro skin models, with a focus on their applications, limitations, and future directions.
Collapse
Affiliation(s)
- Elizabeth Footner
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Kate Firipis
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Emily Liu
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Chris Baker
- Department of Dermatology, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Skin Health Institute, Carlton, VIC 3053, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Peter Foley
- Department of Dermatology, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Skin Health Institute, Carlton, VIC 3053, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Robert M I Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Elena Pirogova
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Cathal O'Connell
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
2
|
Yang Y, Li B, Wang M, Pan S, Wang Y, Gu J. Effect of natural polymer materials on skin healing based on internal wound microenvironment: a review. Front Chem 2023; 11:1257915. [PMID: 37731458 PMCID: PMC10507733 DOI: 10.3389/fchem.2023.1257915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023] Open
Abstract
The concept of wound microenvironment has been discussed for a long time. However, the mechanism of the internal microenvironment is relatively little studied. Here, we present a systematic discussion on the mechanism of natural polymer materials such as chitosan, cellulose, collagen and hyaluronic acid through their effects on the internal wound microenvironment and regulation of wound healing, in order to more comprehensively explain the concept of wound microenvironment and provide a reference for further innovative clinical for the preparation and application of wound healing agents.
Collapse
Affiliation(s)
- Ying Yang
- The People’s Hospital of SND, Suzhou, Jiangsu, China
| | - Bingbing Li
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengxin Wang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shicong Pan
- Guzhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yu Wang
- The People’s Hospital of SND, Suzhou, Jiangsu, China
| | - Jinhui Gu
- Suzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast. NPJ Regen Med 2021; 6:18. [PMID: 33782415 PMCID: PMC8007731 DOI: 10.1038/s41536-021-00133-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/24/2021] [Indexed: 02/01/2023] Open
Abstract
Cell-based scaffold-free therapies seek to develop in vitro organotypic three-dimensional (3D) tissue-like surrogates, capitalising upon the inherent capacity of cells to create tissues with efficiency and sophistication that is still unparalleled by human-made devices. Although automation systems have been realised and (some) success stories have been witnessed over the years in clinical and commercial arenas, in vitro organogenesis is far from becoming a standard way of care. This limited technology transfer is largely attributed to scalability-associated costs, considering that the development of a borderline 3D implantable device requires very high number of functional cells and prolonged ex vivo culture periods. Herein, we critically discuss advancements and shortfalls of scaffold-free cell-based tissue engineering strategies, along with pioneering concepts that have the potential to transform regenerative and reparative medicine.
Collapse
|
4
|
Moniz T, Costa Lima SA, Reis S. Human skin models: From healthy to disease-mimetic systems; characteristics and applications. Br J Pharmacol 2020; 177:4314-4329. [PMID: 32608012 PMCID: PMC7484561 DOI: 10.1111/bph.15184] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
Skin drug delivery is an emerging route in drug development, leading to an urgent need to understand the behaviour of active pharmaceutical ingredients within the skin. Given, As one of the body's first natural defences, the barrier properties of skin provide an obstacle to the successful outcome of any skin drug therapy. To elucidate the mechanisms underlying this barrier, reductionist strategies have designed several models with different levels of complexity, using non-biological and biological components. Besides the detail of information and resemblance to human skin in vivo, offered by each in vitro model, the technical and economic efforts involved must also be considered when selecting the most suitable model. This review provides an outline of the commonly used skin models, including healthy and diseased conditions, in-house developed and commercialized models, their advantages and limitations, and an overview of the new trends in skin-engineered models.
Collapse
Affiliation(s)
- Tânia Moniz
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
| | - Sofia A. Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
| |
Collapse
|
5
|
Zheng J, Yun W, Park J, Kang PJ, Lee G, Song G, Kim IY, You S. Long-term expansion of directly reprogrammed keratinocyte-like cells and in vitro reconstitution of human skin. J Biomed Sci 2020; 27:56. [PMID: 32312260 PMCID: PMC7171822 DOI: 10.1186/s12929-020-00642-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/26/2020] [Indexed: 11/29/2022] Open
Abstract
Background Human keratinocytes and derived products are crucial for skin repair and regeneration. Despite substantial advances in engineered skin equivalents, their poor availability and immunorejection remain major challenges in skin grafting. Methods Induced keratinocyte-like cells (iKCs) were directly reprogrammed from human urine cells by retroviral transduction of two lineage-specific transcription factors BMI1 and △NP63α (BN). Expression of keratinocyte stem cell or their differentiation markers were assessed by PCR, immunofluorescence and RNA-Sequencing. Regeneration capacity of iKCs were assessed by reconstitution of a human skin equivalent under air-interface condition. Results BN-driven iKCs were similar to primary keratinocytes (pKCs) in terms of their morphology, protein expression, differentiation potential, and global gene expression. Moreover, BN-iKCs self-assembled to form stratified skin equivalents in vitro. Conclusions This study demonstrated an approach to generate human iKCs that could be directly reprogrammed from human somatic cells and extensively expanded in serum- and feeder cell-free systems, which will facilitate their broad applicability in an efficient and patient-specific manner.
Collapse
Affiliation(s)
- Jie Zheng
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.,Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Wonjin Yun
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.,Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Junghyun Park
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.,Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Phil Jun Kang
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.,Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gilju Lee
- Department of Pathology, College of Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - In Yong Kim
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Seungkwon You
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea. .,Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Assunção M, Wong CW, Richardson JJ, Tsang R, Beyer S, Raghunath M, Blocki A. Macromolecular dextran sulfate facilitates extracellular matrix deposition by electrostatic interaction independent from a macromolecular crowding effect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110280. [DOI: 10.1016/j.msec.2019.110280] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/16/2019] [Accepted: 10/05/2019] [Indexed: 01/12/2023]
|
7
|
Piccirillo G, Carvajal Berrio DA, Laurita A, Pepe A, Bochicchio B, Schenke-Layland K, Hinderer S. Controlled and tuneable drug release from electrospun fibers and a non-invasive approach for cytotoxicity testing. Sci Rep 2019; 9:3446. [PMID: 30837604 PMCID: PMC6401126 DOI: 10.1038/s41598-019-40079-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/08/2019] [Indexed: 01/10/2023] Open
Abstract
Electrospinning is an attractive method to generate drug releasing systems. In this work, we encapsulated the cell death-inducing drug Diclofenac (DCF) in an electrospun poly-L-lactide (PLA) scaffold. The scaffold offers a system for a sustained and controlled delivery of the cytotoxic DCF over time making it clinically favourable by achieving a prolonged therapeutic effect. We exposed human dermal fibroblasts (HDFs) to the drug-eluting scaffold and employed multiphoton microscopy and fluorescence lifetime imaging microscopy. These methods were suitable for non-invasive and marker-independent assessment of the cytotoxic effects. Released DCF induced changes in cell morphology and glycolytic activity. Furthermore, we showed that drug release can be influenced by adding dimethyl sulfoxide as a co-solvent for electrospinning. Interestingly, without affecting the drug diffusion mechanism, the resulting PLA scaffolds showed altered fibre morphology and enhanced initial DCF burst release. The here described model could represent an interesting way to control the diffusion of encapsulated bio-active molecules and test them using a marker-independent, non-invasive approach.
Collapse
Affiliation(s)
- G Piccirillo
- Department of Science, University of Basilicata, 85100, Potenza, Italy
- Department of Women's Health, Research Institute for Women's Health, Eberhard-Karls-University Tübingen, 72076, Tübingen, Germany
| | - D A Carvajal Berrio
- Department of Women's Health, Research Institute for Women's Health, Eberhard-Karls-University Tübingen, 72076, Tübingen, Germany
| | - A Laurita
- Department of Science, University of Basilicata, 85100, Potenza, Italy
| | - A Pepe
- Department of Science, University of Basilicata, 85100, Potenza, Italy
| | - B Bochicchio
- Department of Science, University of Basilicata, 85100, Potenza, Italy
| | - K Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard-Karls-University Tübingen, 72076, Tübingen, Germany
- Department of Biophysical Chemistry, Natural and Medical Sciences Institute (NMI) at the University of Tübingen, 72770, Reutlingen, Germany
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - S Hinderer
- Department of Women's Health, Research Institute for Women's Health, Eberhard-Karls-University Tübingen, 72076, Tübingen, Germany.
- Department of Biophysical Chemistry, Natural and Medical Sciences Institute (NMI) at the University of Tübingen, 72770, Reutlingen, Germany.
| |
Collapse
|
8
|
Benny P, Raghunath M. Making microenvironments: A look into incorporating macromolecular crowding into in vitro experiments, to generate biomimetic microenvironments which are capable of directing cell function for tissue engineering applications. J Tissue Eng 2017; 8:2041731417730467. [PMID: 29051808 PMCID: PMC5638150 DOI: 10.1177/2041731417730467] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/09/2017] [Indexed: 01/07/2023] Open
Abstract
Biomimetic microenvironments are key components to successful cell culture and tissue engineering in vitro. One of the most accurate biomimetic microenvironments is that made by the cells themselves. Cell-made microenvironments are most similar to the in vivo state as they are cell-specific and produced by the actual cells which reside in that specific microenvironment. However, cell-made microenvironments have been challenging to re-create in vitro due to the lack of extracellular matrix composition, volume and complexity which are required. By applying macromolecular crowding to current cell culture protocols, cell-made microenvironments, or cell-derived matrices, can be generated at significant rates in vitro. In this review, we will examine the causes and effects of macromolecular crowding and how it has been applied in several in vitro systems including tissue engineering.
Collapse
Affiliation(s)
- Paula Benny
- Department of Biochemistry, National University of Singapore, Singapore
| | - Michael Raghunath
- Department of Biochemistry, National University of Singapore, Singapore.,Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Wädenswil, Switzerland
| |
Collapse
|