1
|
Medeiros de Araújo JA, Barão S, Mateos-White I, Espinosa A, Costa MR, Gil-Sanz C, Müller U. ZBTB20 is crucial for the specification of a subset of callosal projection neurons and astrocytes in the mammalian neocortex. Development 2021; 148:271200. [PMID: 34351428 DOI: 10.1242/dev.196642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 07/17/2021] [Indexed: 12/25/2022]
Abstract
Neocortical progenitor cells generate subtypes of excitatory projection neurons in sequential order followed by the generation of astrocytes. The transcription factor zinc finger and BTB domain-containing protein 20 (ZBTB20) has been implicated in regulation of cell specification during neocortical development. Here, we show that ZBTB20 instructs the generation of a subset of callosal projections neurons in cortical layers II/III in mouse. Conditional deletion of Zbtb20 in cortical progenitors, and to a lesser degree in differentiating neurons, leads to an increase in the number of layer IV neurons at the expense of layer II/III neurons. Astrogliogenesis is also affected in the mutants with an increase in the number of a specific subset of astrocytes expressing GFAP. Astrogliogenesis is more severely disrupted by a ZBTB20 protein containing dominant mutations linked to Primrose syndrome, suggesting that ZBTB20 acts in concert with other ZBTB proteins that were also affected by the dominant-negative protein to instruct astrogliogenesis. Overall, our data suggest that ZBTB20 acts both in progenitors and in postmitotic cells to regulate cell fate specification in the mammalian neocortex.
Collapse
Affiliation(s)
- Jéssica Alves Medeiros de Araújo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59056-450, Brazil
| | - Soraia Barão
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Isabel Mateos-White
- BIOTECMED Institute, Universidad de Valencia, Burjassot, Valencia 46100, Spain
| | - Ana Espinosa
- AntalGenics, Quorum Building III, Scientific Park - UMH. Avda. de la Universidad, s/n. 03202 Elche (Alicante), Spain
| | - Marcos Romualdo Costa
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59056-450, Brazil.,Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, Lille Cedex 59019, France
| | - Cristina Gil-Sanz
- BIOTECMED Institute, Universidad de Valencia, Burjassot, Valencia 46100, Spain
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Phan TP, Maryniak AL, Boatwright CA, Lee J, Atkins A, Tijhuis A, Spierings DCJ, Bazzi H, Foijer F, Jordan PW, Stracker TH, Holland AJ. Centrosome defects cause microcephaly by activating the 53BP1-USP28-TP53 mitotic surveillance pathway. EMBO J 2021; 40:e106118. [PMID: 33226141 PMCID: PMC7780150 DOI: 10.15252/embj.2020106118] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
Mutations in centrosome genes deplete neural progenitor cells (NPCs) during brain development, causing microcephaly. While NPC attrition is linked to TP53-mediated cell death in several microcephaly models, how TP53 is activated remains unclear. In cultured cells, mitotic delays resulting from centrosome loss prevent the growth of unfit daughter cells by activating a pathway involving 53BP1, USP28, and TP53, termed the mitotic surveillance pathway. Whether this pathway is active in the developing brain is unknown. Here, we show that the depletion of centrosome proteins in NPCs prolongs mitosis and increases TP53-mediated apoptosis. Cell death after a delayed mitosis was rescued by inactivation of the mitotic surveillance pathway. Moreover, 53BP1 or USP28 deletion restored NPC proliferation and brain size without correcting the upstream centrosome defects or extended mitosis. By contrast, microcephaly caused by the loss of the non-centrosomal protein SMC5 is also TP53-dependent but is not rescued by loss of 53BP1 or USP28. Thus, we propose that mutations in centrosome genes cause microcephaly by delaying mitosis and pathologically activating the mitotic surveillance pathway in the developing brain.
Collapse
Affiliation(s)
- Thao P Phan
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Aubrey L Maryniak
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | | | - Junsu Lee
- Johns Hopkins UniversityBaltimoreMDUSA
| | - Alisa Atkins
- Department of Biochemistry and Molecular BiologyBloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMDUSA
| | - Andrea Tijhuis
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Diana CJ Spierings
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Hisham Bazzi
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Department of Dermatology and VenereologyUniversity Hospital of CologneKölnGermany
| | - Floris Foijer
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Philip W Jordan
- Department of Biochemistry and Molecular BiologyBloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMDUSA
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Andrew J Holland
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|