1
|
Photonics of Trimethine Cyanine Dyes as Probes for Biomolecules. Molecules 2022; 27:molecules27196367. [PMID: 36234904 PMCID: PMC9573451 DOI: 10.3390/molecules27196367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cyanine dyes are widely used as fluorescent probes in biophysics and medical biochemistry due to their unique photophysical and photochemical properties (their photonics). This review is focused on a subclass of the most widespread and studied cyanine dyes—trimethine cyanines, which can serve as potential probes for biomolecules. The works devoted to the study of the noncovalent interaction of trimethine cyanine dyes with biomolecules and changing the properties of these dyes upon the interaction are reviewed. In addition to the spectral-fluorescent properties, elementary photochemical properties of trimethine cyanines are considered, including: photoisomerization and back isomerization of the photoisomer, generation and decay of the triplet state, and its quenching by oxygen and other quenchers. The influence of DNA and other nucleic acids, proteins, and other biomolecules on these properties is covered. The interaction of a monomer dye molecule with a biomolecule usually leads to a fluorescence growth, damping of photoisomerization (if any), and an increase in intersystem crossing to the triplet state. Sometimes aggregation of dye molecules on biomolecules is observed. Quenching of the dye triplet state in a complex with biomolecules by molecular oxygen usually occurs with a rate constant much lower than the diffusion limit with allowance for the spin-statistical factor 1/9. The practical application of trimethine cyanines in biophysics and (medical) biochemistry is also considered. In conclusion, the prospects for further studies on the cyanine dye–biomolecule system and the development of new effective dye probes (including probes of a new type) for biomolecules are discussed.
Collapse
|
2
|
Fang N, Wang K, Tong D. An Algorithm for Gene Fragment Reconstruction. Interdiscip Sci 2021; 13:118-127. [PMID: 33609237 PMCID: PMC7896547 DOI: 10.1007/s12539-021-00419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 11/25/2022]
Abstract
Gene sequencing technology has been playing an important role in many aspects, such as life science, disease medicine and health medicine, particularly in the extremely tough process of fighting against 2019-novel coronavirus. Drawing DNA restriction map is a particularly important technology in genetic biology. The simplified partial digestion method (SPDP), a biological method, has been widely used to cut DNA molecules into DNA fragments and obtain the biological information of each fragment. In this work, we propose an algorithm based on 0–1 planning for the location of restriction sites on a DNA molecule, which is able to solve the problem of DNA fragment reconstruction just based on data of fragments’ length. Two specific examples are presented in detail. Furthermore, based on 1000 groups of original DNA sequences randomly generated, we define the coincidence rate and unique coincidence rate between the reconstructed DNA sequence and the original DNA sequence, and then analyze separately the effect of the number of fragments and the maximum length of DNA fragments on the coincidence rate and unique coincidence rate as defined. The effectiveness of the algorithm is proved. Besides, based on the existing optimization solution obtained, we simulate and discuss the influence of the error by computation method. It turns out that the error of position of one restriction site does not affect other restriction sites and errors of most restriction sites may lead to the failure of sequence reconstruction. Matlab 7.1 program is used to solve feasible solutions of the location of restriction sites, derive DNA fragment sequence and carry out the statistical analysis and error analysis. This paper focuses on basic computer algorithm implementation of rearrangement and sequencing rather than biochemical technology. The innovative application of the mathematical idea of 0–1 planning to DNA sequence mapping construction, to a certain extent, greatly simplifies the difficulty and complexity of calculation and accelerates the process of 'jigsaw' of DNA fragments.
Collapse
Affiliation(s)
- Ningyuan Fang
- School of Sciences, Southwest Petroleum University, Chengdu, 610500, Sichuan, People's Republic of China
| | - Kaifa Wang
- School of Mathematics and Statistics, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Dali Tong
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
3
|
Shin E, Kim W, Lee S, Bae J, Kim S, Ko W, Seo HS, Lim S, Lee HS, Jo K. Truncated TALE-FP as DNA Staining Dye in a High-salt Buffer. Sci Rep 2019; 9:17197. [PMID: 31748571 PMCID: PMC6868158 DOI: 10.1038/s41598-019-53722-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/05/2019] [Indexed: 01/19/2023] Open
Abstract
Large DNA molecules are a promising platform for in vitro single-molecule biochemical analysis to investigate DNA-protein interactions by fluorescence microscopy. For many studies, intercalating fluorescent dyes have been primary DNA staining reagents, but they often cause photo-induced DNA breakage as well as structural deformation. As a solution, we previously developed several fluorescent-protein DNA-binding peptides or proteins (FP-DBP) for reversibly staining DNA molecules without structural deformation or photo-induced damage. However, they cannot stain DNA in a condition similar to a physiological salt concentration that most biochemical reactions require. Given these concerns, here we developed a salt-tolerant FP-DBP: truncated transcription activator-like effector (tTALE-FP), which can stain DNA up to 100 mM NaCl. Moreover, we found an interesting phenomenon that the tTALE-FP stained DNA evenly in 1 × TE buffer but showed AT-rich specific patterns from 40 mM to 100 mM NaCl. Using an assay based on fluorescence resonance energy transfer, we demonstrated that this binding pattern is caused by a higher DNA binding affinity of tTALE-FP for AT-rich compared to GC-rich regions. Finally, we used tTALE-FP in a single molecule fluorescence assay to monitor real-time restriction enzyme digestion of single DNA molecules. Altogether, our results demonstrate that this protein can provide a useful alternative as a DNA stain over intercalators.
Collapse
Affiliation(s)
- Eunji Shin
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea
| | - Woojung Kim
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea
| | - Seonghyun Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea
| | - Jaeyoung Bae
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea
| | - Sanggil Kim
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea
| | - Wooseok Ko
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Korea
| | - Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Korea
| | - Hyun Soo Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea.
| | - Kyubong Jo
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea.
| |
Collapse
|