1
|
Lee AS, Ayers LJ, Kosicki M, Chan WM, Fozo LN, Pratt BM, Collins TE, Zhao B, Rose MF, Sanchis-Juan A, Fu JM, Wong I, Zhao X, Tenney AP, Lee C, Laricchia KM, Barry BJ, Bradford VR, Jurgens JA, England EM, Lek M, MacArthur DG, Lee EA, Talkowski ME, Brand H, Pennacchio LA, Engle EC. A cell type-aware framework for nominating non-coding variants in Mendelian regulatory disorders. Nat Commun 2024; 15:8268. [PMID: 39333082 PMCID: PMC11436875 DOI: 10.1038/s41467-024-52463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/04/2024] [Indexed: 09/29/2024] Open
Abstract
Unsolved Mendelian cases often lack obvious pathogenic coding variants, suggesting potential non-coding etiologies. Here, we present a single cell multi-omic framework integrating embryonic mouse chromatin accessibility, histone modification, and gene expression assays to discover cranial motor neuron (cMN) cis-regulatory elements and subsequently nominate candidate non-coding variants in the congenital cranial dysinnervation disorders (CCDDs), a set of Mendelian disorders altering cMN development. We generate single cell epigenomic profiles for ~86,000 cMNs and related cell types, identifying ~250,000 accessible regulatory elements with cognate gene predictions for ~145,000 putative enhancers. We evaluate enhancer activity for 59 elements using an in vivo transgenic assay and validate 44 (75%), demonstrating that single cell accessibility can be a strong predictor of enhancer activity. Applying our cMN atlas to 899 whole genome sequences from 270 genetically unsolved CCDD pedigrees, we achieve significant reduction in our variant search space and nominate candidate variants predicted to regulate known CCDD disease genes MAFB, PHOX2A, CHN1, and EBF3 - as well as candidates in recurrently mutated enhancers through peak- and gene-centric allelic aggregation. This work delivers non-coding variant discoveries of relevance to CCDDs and a generalizable framework for nominating non-coding variants of potentially high functional impact in other Mendelian disorders.
Collapse
Affiliation(s)
- Arthur S Lee
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Lauren J Ayers
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Wai-Man Chan
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Lydia N Fozo
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brandon M Pratt
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas E Collins
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Boxun Zhao
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Matthew F Rose
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Medical Genetics Training Program, Harvard Medical School, Boston, MA, USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jack M Fu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xuefang Zhao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alan P Tenney
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cassia Lee
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Harvard College, Cambridge, MA, USA
| | - Kristen M Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brenda J Barry
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Victoria R Bradford
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie A Jurgens
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eleina M England
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Eunjung Alice Lee
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Elizabeth C Engle
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Medical Genetics Training Program, Harvard Medical School, Boston, MA, USA.
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Puri D, Barry BJ, Engle EC. TUBB3 and KIF21A in neurodevelopment and disease. Front Neurosci 2023; 17:1226181. [PMID: 37600020 PMCID: PMC10436312 DOI: 10.3389/fnins.2023.1226181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Neuronal migration and axon growth and guidance require precise control of microtubule dynamics and microtubule-based cargo transport. TUBB3 encodes the neuronal-specific β-tubulin isotype III, TUBB3, a component of neuronal microtubules expressed throughout the life of central and peripheral neurons. Human pathogenic TUBB3 missense variants result in altered TUBB3 function and cause errors either in the growth and guidance of cranial and, to a lesser extent, central axons, or in cortical neuronal migration and organization, and rarely in both. Moreover, human pathogenic missense variants in KIF21A, which encodes an anterograde kinesin motor protein that interacts directly with microtubules, alter KIF21A function and cause errors in cranial axon growth and guidance that can phenocopy TUBB3 variants. Here, we review reported TUBB3 and KIF21A variants, resulting phenotypes, and corresponding functional studies of both wildtype and mutant proteins. We summarize the evidence that, in vitro and in mouse models, loss-of-function and missense variants can alter microtubule dynamics and microtubule-kinesin interactions. Lastly, we highlight additional studies that might contribute to our understanding of the relationship between specific tubulin isotypes and specific kinesin motor proteins in health and disease.
Collapse
Affiliation(s)
- Dharmendra Puri
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Brenda J. Barry
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Elizabeth C. Engle
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Whitman MC, Miyake N, Nguyen EH, Bell JL, Matos Ruiz PM, Chan WM, Di Gioia SA, Mukherjee N, Barry BJ, Bosley TM, Khan AO, Engle EC. Decreased ACKR3 (CXCR7) function causes oculomotor synkinesis in mice and humans. Hum Mol Genet 2020; 28:3113-3125. [PMID: 31211835 DOI: 10.1093/hmg/ddz137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 01/17/2023] Open
Abstract
Oculomotor synkinesis is the involuntary movement of the eyes or eyelids with a voluntary attempt at a different movement. The chemokine receptor CXCR4 and its ligand CXCL12 regulate oculomotor nerve development; mice with loss of either molecule have oculomotor synkinesis. In a consanguineous family with congenital ptosis and elevation of the ptotic eyelid with ipsilateral abduction, we identified a co-segregating homozygous missense variant (c.772G>A) in ACKR3, which encodes an atypical chemokine receptor that binds CXCL12 and functions as a scavenger receptor, regulating levels of CXCL12 available for CXCR4 signaling. The mutant protein (p.V258M) is expressed and traffics to the cell surface but has a lower binding affinity for CXCL12. Mice with loss of Ackr3 have variable phenotypes that include misrouting of the oculomotor and abducens nerves. All embryos show oculomotor nerve misrouting, ranging from complete misprojection in the midbrain, to aberrant peripheral branching, to a thin nerve, which aberrantly innervates the lateral rectus (as seen in Duane syndrome). The abducens nerve phenotype ranges from complete absence, to aberrant projections within the orbit, to a normal trajectory. Loss of ACKR3 in the midbrain leads to downregulation of CXCR4 protein, consistent with reports that excess CXCL12 causes ligand-induced degradation of CXCR4. Correspondingly, excess CXCL12 applied to ex vivo oculomotor slices causes axon misrouting, similar to inhibition of CXCR4. Thus, ACKR3, through its regulation of CXCL12 levels, is an important regulator of axon guidance in the oculomotor system; complete loss causes oculomotor synkinesis in mice, while reduced function causes oculomotor synkinesis in humans.
Collapse
Affiliation(s)
- Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Noriko Miyake
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Elaine H Nguyen
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Jessica L Bell
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Paola M Matos Ruiz
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Wai-Man Chan
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Silvio Alessandro Di Gioia
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Nisha Mukherjee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Brenda J Barry
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - T M Bosley
- Department of Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Arif O Khan
- Division of Pediatric Ophthalmology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Elizabeth C Engle
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|