1
|
Liu X, Wu Y, Bennett S, Zou J, Xu J, Zhang L. The Effects of Different Dietary Patterns on Bone Health. Nutrients 2024; 16:2289. [PMID: 39064732 PMCID: PMC11280484 DOI: 10.3390/nu16142289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Bone metabolism is a process in which osteoclasts continuously clear old bone and osteoblasts form osteoid and mineralization within basic multicellular units, which are in a dynamic balance. The process of bone metabolism is affected by many factors, including diet. Reasonable dietary patterns play a vital role in the prevention and treatment of bone-related diseases. In recent years, dietary patterns have changed dramatically. With the continuous improvement in the quality of life, high amounts of sugar, fat and protein have become a part of people's daily diets. However, people have gradually realized the importance of a healthy diet, intermittent fasting, calorie restriction, a vegetarian diet, and moderate exercise. Although these dietary patterns have traditionally been considered healthy, their true impact on bone health are still unclear. Studies have found that caloric restriction and a vegetarian diet can reduce bone mass, the negative impact of a high-sugar and high-fat dietary (HSFD) pattern on bone health is far greater than the positive impact of the mechanical load, and the relationship between a high-protein diet (HPD) and bone health remains controversial. Calcium, vitamin D, and dairy products play an important role in preventing bone loss. In this article, we further explore the relationship between different dietary patterns and bone health, and provide a reference for how to choose the appropriate dietary pattern in the future and for how to prevent bone loss caused by long-term poor dietary patterns in children, adolescents, and the elderly. In addition, this review provides dietary references for the clinical treatment of bone-related diseases and suggests that health policy makers should consider dietary measures to prevent and treat bone loss.
Collapse
Affiliation(s)
- Xiaohua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.L.)
| | - Yangming Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.L.)
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; (X.L.)
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lingli Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
2
|
Jensen VFH, Mølck AM, Dalgaard M, McGuigan FE, Akesson KE. Changes in bone mass associated with obesity and weight loss in humans: Applicability of animal models. Bone 2021; 145:115781. [PMID: 33285255 DOI: 10.1016/j.bone.2020.115781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/05/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022]
Abstract
The implications of obesity and weight loss for human bone health are not well understood. Although the bone changes associated with weight loss are similar in humans and rodents, that is not the case for obesity. In humans, obesity is generally associated with increased bone mass, an outcome which is exacerbated by advanced age and menopause. In rodents, by contrast, bone mass decreases in proportion to severity and duration of obesity, and is influenced by sex, age and mechanical load. Despite these discrepancies, rodents are frequently used to model the situation in humans. In this review, we summarise the existing knowledge of the effects of obesity and weight loss on bone mass in humans and rodents, focusing on the translatability of findings from animal models. We then describe how animal models should be used to broaden the understanding of the relationship between obesity, weight loss, and skeletal health in humans. Specifically, we highlight the aspects of study design that should be considered to optimise translatability of the rodent models of obesity and weight loss. Notably, the sex, age, and nutritional status of the animals should ideally match those of interest in humans. With these caveats in mind, and depending on the research question asked, our review underscores that animal models can provide valuable information for obesity and weight-management research.
Collapse
Affiliation(s)
- Vivi F H Jensen
- Lund University, Department of Clinical Sciences Malmö and Skåne University Hospital, Department of Orthopedics, Inga Marie Nilssons Gata 22, 205 02 Malmö, Sweden.
| | - Anne-Marie Mølck
- Novo Nordisk A/S, Department of Safety Sciences, Imaging & Data Management, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Majken Dalgaard
- Novo Nordisk A/S, Department of Safety Sciences, Imaging & Data Management, Novo Nordisk Park 1, 2760 Maaloev, Denmark
| | - Fiona E McGuigan
- Lund University, Department of Clinical Sciences Malmö and Skåne University Hospital, Department of Orthopedics, Inga Marie Nilssons Gata 22, 205 02 Malmö, Sweden
| | - Kristina E Akesson
- Lund University, Department of Clinical Sciences Malmö and Skåne University Hospital, Department of Orthopedics, Inga Marie Nilssons Gata 22, 205 02 Malmö, Sweden
| |
Collapse
|
3
|
Zhu J, Liu C, Jia J, Zhang C, Yuan W, Leng H, Xu Y, Song C. Short-term caloric restriction induced bone loss in both axial and appendicular bones by increasing adiponectin. Ann N Y Acad Sci 2020; 1474:47-60. [PMID: 32469430 DOI: 10.1111/nyas.14380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Abstract
Caloric restriction (CR) is well described and has received extensive attention for its multiple benefits, including longevity and stress resistance. However, some studies have shown that CR negatively influences bone, although a mechanism hasn't been provided. Adiponectin, an adipocyte-derived hormone, can affect bone metabolism by various pathways. To explore the role of adiponectin in short-term CR on bone, we tested the effect of short-term CR on limb bones (tibia and femur) and lumbar vertebral bodies of young C57BL/6 wild-type (WT) and adiponectin-deficient (Apn-/- ) mice. Two dietary regimes, ad libitum (AL) and CR (70% of the AL diet), were used. Dietary restriction led to increased serum adiponectin in WT mice, while bone mineral density, bone microarchitecture, and biomechanical outcomes of limb bone and vertebrae were decreased. In contrast, bone length, microarchitecture, and biomechanical outcomes were not impaired after CR in Apn-/- mice. Furthermore, CR increased adiponectin expression both in white adipose tissue and bone marrow adipose tissue in young WT mice. Histology analysis showed that expansion of bone marrow adipose tissue after CR in Apn-/- mice was impaired compared with WT mice. These results suggest that increased adiponectin induced by short-term CR may negatively influence bones.
Collapse
Affiliation(s)
- Junxiong Zhu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Can Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Jialin Jia
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Chenggui Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Huijie Leng
- Department of Orthopedics, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Yingsheng Xu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Spinal Diseases, Beijing, China
| |
Collapse
|
4
|
Huang TH, Ables GP. Dietary restrictions, bone density, and bone quality. Ann N Y Acad Sci 2016; 1363:26-39. [PMID: 26881697 DOI: 10.1111/nyas.13004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023]
Abstract
Caloric restriction (CR), protein restriction (PR), and specific amino acid restriction (e.g., methionine restriction (MR)) are different dietary interventions that have been confirmed with regard to their comprehensive benefits to metabolism and health. Based on bone densitometric measurements, weight loss induced by dietary restriction is known to be accompanied by reduced areal bone mineral density, bone mass, and/or bone size, and it is considered harmful to bone health. However, because of technological advancements in bone densitometric instruments (e.g., high-resolution X-ray tomography), dietary restrictions have been found to cause a reduction in bone mass/size rather than volumetric bone mineral density. Furthermore, when considering bone quality, bone health consists of diverse indices that cannot be fully represented by densitometric measurements alone. Indeed, there is evidence that moderate dietary restrictions do not impair intrinsic bone material properties, despite the reduction in whole-bone strength because of a smaller bone size. In the present review, we integrate research evidence from traditional densitometric measurements, metabolic status assays (e.g., energy metabolism, oxidative stresses, and inflammatory responses), and biomaterial analyses to provide revised conclusions regarding the effects of CR, PR, and MR on the skeleton.
Collapse
Affiliation(s)
- Tsang-hai Huang
- Laboratory of Exercise, Nutrition and Bone Biology, Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan
| | - Gene P Ables
- Orentreich Foundation for the Advancement of Science, Cold Spring-on-Hudson, New York
| |
Collapse
|
5
|
Lee WY. Articles in 'endocrinology and metabolism' in 2014. Endocrinol Metab (Seoul) 2015; 30:47-52. [PMID: 25827457 PMCID: PMC4384668 DOI: 10.3803/enm.2015.30.1.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Won Young Lee
- Department of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|