1
|
Arjmandi K, Salahshourifar I, Irani S, Ameli F, Esfandbod M. Association study of TYMS gene expression with TYMS and ENOSF1 genetic variants in neoadjuvant chemotherapy response of gastric cancer. J Pathol Transl Med 2025; 59:105-114. [PMID: 40195828 PMCID: PMC12010872 DOI: 10.4132/jptm.2024.11.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND The present research was designed to study the associations between genetic variants of TYMS and ENOSF1 genes with TYMS and ENOSF1 gene expression in neoadjuvant chemotherapy response among patients with gastric cancer. METHODS Formalin-embedded and paraffin-fixed matched tumor and normal gastric cancer tissue samples from patients who received neoadjuvant 5-fluorouracil (5-FU) treatment were obtained. DNA and RNA were extracted for all samples. A 28-bp variable number tandem repeat (VNTR) at the 5' untranslated region of TYMS gene and rs2612091 and rs2741171 variants in the ENOSF1 gene were genotyped for normal tissue samples. The real-time polymerase chain reaction method was used to study the expression of ENOSF1 and TYMS genes in both normal and tumor tissues. Data were analyzed using REST 2000 and SPSS ver. 26.0 software programs. RESULTS A significant association between TYMS 2R3R VNTR genotypes and 5-FU therapy was found (p = .032). The 3R3R and 2R2R genotypes were significantly associated with increased and decreased survival time, respectively (p = .003). The 3R3R genotype was significantly associated with TYMS overexpression (p < .001). Moreover, a significant association was found between the rs2612091 genotype and treatment outcome (p = .017). CONCLUSIONS This study highlights the impact of TYMS and ENOSF1 genes as predictive indicators for survival and response to 5-FU-based neoadjuvant chemotherapy in gastric cancer patients.
Collapse
Affiliation(s)
- Khadijeh Arjmandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Iman Salahshourifar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fereshteh Ameli
- Pathology Department, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Esfandbod
- Department of Hematology and Oncology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Ampomah-Wireko M, Luo C, Cao Y, Wang H, Nininahazwe L, Wu C. Chemical probe of AHL modulators on quorum sensing in Gram-Negative Bacteria and as antiproliferative agents: A review. Eur J Med Chem 2021; 226:113864. [PMID: 34626877 DOI: 10.1016/j.ejmech.2021.113864] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022]
Abstract
Pathogenic bacteria use an intercellular chemical communication system called quorum sensing (QS) to control the expression of cellular functions such as virulence factors, biofilm formation, toxin production, and antibiotic resistance in a manner that is highly dependent on population density. Hence, since the emergence of QS, there has been a great interest in exploiting the QS mechanism as a new drug target. Therefore, blocking the QS mechanism can be an effective strategy to control infection and solve the problem of drug resistance. So far, there is no clinically approved anti-QS drug that can disable the circuits of QS systems. This review discusses the quorum-sensing network systems and novel anti-QS inhibitors in some Gram-negative bacteria.
Collapse
Affiliation(s)
- Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & School of Pharmaceutical Sciences, Zhengzhou, 450001, PR China; Zhengzhou Key Laboratory of New Veterinary Drug Preparation Innovation, Zhengzhou, 450001, PR China
| | - Chunying Luo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & School of Pharmaceutical Sciences, Zhengzhou, 450001, PR China; Zhengzhou Key Laboratory of New Veterinary Drug Preparation Innovation, Zhengzhou, 450001, PR China
| | - Yaquan Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & School of Pharmaceutical Sciences, Zhengzhou, 450001, PR China; Zhengzhou Key Laboratory of New Veterinary Drug Preparation Innovation, Zhengzhou, 450001, PR China
| | - Huanhuan Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & School of Pharmaceutical Sciences, Zhengzhou, 450001, PR China; Zhengzhou Key Laboratory of New Veterinary Drug Preparation Innovation, Zhengzhou, 450001, PR China
| | - Lauraine Nininahazwe
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & School of Pharmaceutical Sciences, Zhengzhou, 450001, PR China; Zhengzhou Key Laboratory of New Veterinary Drug Preparation Innovation, Zhengzhou, 450001, PR China
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & School of Pharmaceutical Sciences, Zhengzhou, 450001, PR China; Zhengzhou Key Laboratory of New Veterinary Drug Preparation Innovation, Zhengzhou, 450001, PR China.
| |
Collapse
|
3
|
Genetic markers in methotrexate treatments. THE PHARMACOGENOMICS JOURNAL 2018; 18:689-703. [DOI: 10.1038/s41397-018-0047-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/06/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022]
|
4
|
Meulendijks D, Rozeman EA, Cats A, Sikorska K, Joerger M, Deenen MJ, Beijnen JH, Schellens JHM. Pharmacogenetic variants associated with outcome in patients with advanced gastric cancer treated with fluoropyrimidine and platinum-based triplet combinations: a pooled analysis of three prospective studies. THE PHARMACOGENOMICS JOURNAL 2016; 17:441-451. [DOI: 10.1038/tpj.2016.81] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 07/22/2016] [Accepted: 08/25/2016] [Indexed: 01/08/2023]
|
5
|
Meulendijks D, Jacobs BAW, Aliev A, Pluim D, van Werkhoven E, Deenen MJ, Beijnen JH, Cats A, Schellens JHM. Increased risk of severe fluoropyrimidine-associated toxicity in patients carrying a G to C substitution in the first 28-bp tandem repeat of the thymidylate synthase 2R allele. Int J Cancer 2015; 138:245-53. [PMID: 26189437 DOI: 10.1002/ijc.29694] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/02/2015] [Accepted: 07/02/2015] [Indexed: 01/16/2023]
Abstract
The fluoropyrimidines act by inhibiting thymidylate synthase (TS). Recent studies have shown that patients' risk of severe fluoropyrimidine-associated toxicity is affected by polymorphisms in the 5'-untranslated region of TYMS, the gene encoding TS. A G>C substitution in the promoter enhancer region of TYMS, rs183205964 (known as the 2RC allele), markedly reduces TS activity in vitro, but its clinical relevance is unknown. We determined rs183205964 in 1605 patients previously enrolled in a prospective multicenter study. Associations between putative low TS expression genotypes (3RC/2RC, 2RG/2RC, and 2RC/2RC) and severe toxicity were investigated using univariable and multivariable logistic regression. Activity of TS and TYMS gene expression were determined in peripheral blood mononuclear cells (PBMCs) of a patient carrying genotype 2RC/2RC and of a control group of healthy individuals. Among 1,605 patients, 28 patients (1.7%) carried the 2RC allele. Twenty patients (1.2%) carried a risk-associated genotype (2RG/2RC, n=13; 3RC/2RC, n=6; and 2RC/2RC, n=1), the eight remaining patients had genotype 3RG/2RC. Early severe toxicity and toxicity-related hospitalization were significantly more frequent in risk-associated genotype carriers (OR 3.0, 95%CI 1.04-8.93, p=0.043 and OR 3.8, 95%CI 1.19-11.9, p=0.024, respectively, in multivariable analysis). The patient with genotype 2RC/2RC was hospitalized twice and had severe febrile neutropenia, diarrhea, and hand-foot syndrome. Baseline TS activity and gene expression in PBMCs of this patient, and a healthy individual with the 2RC allele, were found to be within the normal range. Our study suggests that patients carrying rs183205964 are at strongly increased risk of severe, potentially life-threatening, toxicity when treated with fluoropyrimidines.
Collapse
Affiliation(s)
- Didier Meulendijks
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bart A W Jacobs
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Abidin Aliev
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Dick Pluim
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Erik van Werkhoven
- Department of Biometrics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maarten J Deenen
- Department of Clinical Pharmacy, Catharina Hospital, Eindhoven, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Annemieke Cats
- Division of Gastroenterology and Hepatology, Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan H M Schellens
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Genome-wide analysis of methotrexate pharmacogenomics in rheumatoid arthritis shows multiple novel risk variants and leads for TYMS regulation. Pharmacogenet Genomics 2015; 24:211-9. [PMID: 24583629 DOI: 10.1097/fpc.0000000000000036] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Methotrexate (MTX) is the drug of first choice for the treatment of rheumatoid arthritis (RA), but is effective only in around 60% of the patients. Identification of genetic markers to predict response is essential for effective treatment within a critical window period of 6 months after diagnosis, but have been hitherto elusive. In this study, we used genome-wide genotype data to identify the potential risk variants associated with MTX (poor)response in a north Indian RA cohort. MATERIALS AND METHODS Genome-wide genotyping data for a total of 457 RA patients [297 good (DAS28-3≤3.2) and 160 poor (DAS28-3≥5.1) responders] on MTX monotherapy were tested for association using an additive model. Support vector machine and genome-wide pathway analysis were used to identify additional risk variants and pathways. All risk loci were imputed to fine-map the association signals and identify causal variant(s) of therapeutic/diagnostic relevance. RESULTS Seven novel suggestive loci from genome-wide (P≤5×10(-5)) and three from support vector machine analysis were associated with MTX (poor)response. The associations of published candidate genes namely DHFR (P=0.014), FPGS (P=0.035), and TYMS (P=0.005) and purine and nucleotide metabolism pathways were reconfirmed. Imputation, followed by bioinformatic analysis indicated possible interaction between two reversely oriented overlapping genes namely ENOSF1 and TYMS at the post-transcriptional level. CONCLUSION In this first ever genome-wide analysis on MTX treatment response in RA patients, 10 new risk loci were identified. These preliminary findings warrant replication in independent studies. Further, TYMS expression at the post-transcriptional level seems to be probably regulated through an antisense-RNA involving the 6-bp ins/del marker in the overlapping segment at 3'UTR of TYMS-ENOSF1, a finding with impending pharmacogenetic applications.
Collapse
|
7
|
Yew WS, Fedorov AA, Fedorov EV, Rakus JF, Pierce RW, Almo SC, Gerlt JA. Evolution of enzymatic activities in the enolase superfamily: L-fuconate dehydratase from Xanthomonas campestris. Biochemistry 2007; 45:14582-97. [PMID: 17144652 DOI: 10.1021/bi061687o] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many members of the mechanistically diverse enolase superfamily have unknown functions. In this report we use both genome (operon) context and screening of a library of acid sugars to assign the L-fuconate dehydratase (FucD) function to a member of the mandelate racemase (MR) subgroup of the superfamily encoded by the Xanthomonas campestris pv. campestris str. ATCC 33913 genome (GI:21233491). Orthologues of FucD are found in both bacteria and eukaryotes, the latter including the rTS beta protein in Homo sapiens that has been implicated in regulating thymidylate synthase activity. As suggested by sequence alignments and confirmed by high-resolution structures in the presence of active site ligands, FucD and MR share the same active site motif of functional groups: three carboxylate ligands for the essential Mg2+ located at the ends of the third, fourth, and fifth beta-strands in the (beta/alpha)7beta-barrel domain (Asp 248, Glu 274, and Glu 301, respectively), a Lys-x-Lys motif at the end of the second beta-strand (Lys 218 and Lys 220), a His-Asp dyad at the end of the seventh and beta-strands (His 351 and Asp 324, respectively), and a Glu at the end of the eighth beta-strand (Glu 382). The mechanism of the FucD reaction involves initial abstraction of the 2-proton by Lys 220, acid catalysis of the vinylogous beta-elimination of the 3-OH group by His 351, and stereospecific ketonization of the resulting enol, likely by the conjugate acid of Lys 220, to yield the 2-keto-3-deoxy-L-fuconate product. Screening of the library of acid sugars revealed substrate and functional promiscuity: In addition to L-fuconate, FucD also catalyzes the dehydration of L-galactonate, D-arabinonate, D-altronate, L-talonate, and D-ribonate. The dehydrations of L-fuconate, L-galactonate, and D-arabinonate are initiated by abstraction of the 2-protons by Lys 220. The dehydrations of L-talonate and D-ribonate are initiated by abstraction of the 2-protons by His 351; however, protonation of the enediolate intermediates by the conjugate acid of Lys 220 yields L-galactonate and D-arabinonate in competition with dehydration. The functional promiscuity discovered for FucD highlights possible structural mechanisms for evolution of function in the enolase superfamily.
Collapse
Affiliation(s)
- Wen Shan Yew
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|