1
|
Li M, Lin B, Zhu B. Rapid Screening of Etomidate and Its Analogs in Seized e-Liquids Using Thermal Desorption Electrospray Ionization Coupled with Triple Quadrupole Mass Spectrometry. TOXICS 2024; 12:884. [PMID: 39771099 PMCID: PMC11679366 DOI: 10.3390/toxics12120884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
The growing popularity of e-cigarettes has raised significant concerns about the safety and potential abuse of these products. Compounds originally used in the medical field, such as etomidate, metomidate, and isopropoxate, have been illegally added to e-liquids, posing substantial risks to consumer health, and facilitating the misuse of illicit drugs. To address these concerns, this study developed a rapid and efficient method for detecting etomidate, metomidate, and isopropoxate in e-liquids using thermal desorption electrospray ionization coupling triple quadrupole mass spectrometry (TD-ESI/MS/MS). The TD-ESI/MS/MS method exhibits high sensitivity, with detection limits for etomidate, metomidate, and isopropoxate reaching 3 ng/mL. Screening of 70 seized e-liquid samples from 12 cases using TD-ESI/MS/MS revealed that 46 samples contained only etomidate, 13 samples contained only isopropoxate, and 11 samples contained both etomidate and metomidate. The qualitative results obtained from TD-ESI/MS/MS were in complete agreement with those of GC-MS. Moreover, the TD-ESI/MS/MS method requires no pre-treatment steps and has a detection time of only 1 min, thereby saving experimental consumables and significantly reducing detection time. The method demonstrated high sensitivity, accuracy, and reproducibility, making it suitable for high-throughput screening in forensic and regulatory settings.
Collapse
Affiliation(s)
- Meng Li
- Department of Forensic Science, Fujian Police College, Fuzhou 350007, China;
| | - Bicheng Lin
- Fujian Zhengzhong Forensic Sciences Institute, Fuzhou 350108, China;
| | - Binling Zhu
- Department of Forensic Science, Fujian Police College, Fuzhou 350007, China;
| |
Collapse
|
2
|
Huang TL, Su H, Chen JC, Kuo SY, Hou CY, Shih SY, Chu KA, Ponnusamy VK, Lee CW, Shiea J. Rapid detection of ingested acetaminophen on face mask by ambient ionization tandem mass spectrometry. Anal Chim Acta 2024; 1329:343225. [PMID: 39396290 DOI: 10.1016/j.aca.2024.343225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/30/2024] [Accepted: 09/08/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND A regular face mask is comprised of three layers for resisting moisture, filtration, and absorbing oral fluid, respectively. Since the polymers with different polarities are used to make the layers, a face mask can be used as a sampling tool to retain polar or non-polar chemical and biochemical substances in the exhaled breath. In this study, thermal desorption-electrospray ionization tandem mass spectrometry (TD-ESI/MS/MS), an ambient ionization mass spectrometric technique, was used to detect trace acetaminophen that were exhaled and retained on the surface of different layers in a face mask. RESULTS With probe sampling combined with TD-ESI/MS/MS, the acetaminophen ion signal can be detected at the mouth/nostril region of the face mask after taking the acetaminophen tablet. The experimental results were similar to previous studies for the detection of acetaminophen in blood over time using LC/MS/MS. In addition, the intensities of acetaminophen on different layers of the face mask could reveal the differing distributions of exhaled acetaminophen on each layer. To explore the distribution of acetaminophen on the face mask surface, multiple probes were used to collect samples from different locations of the face mask for analysis. The molecular mapping of acetaminophen on the face mask was rendered by scaling the analyte ion signal intensity based on a temperature color gradient. The cartography showed a higher acetaminophen ion signal distribution on the mouth and nostril regions than in other areas of the face mask. SIGNIFICANCE Owing to the advantages of a simple, sensitive, and non-invasive sampling approach, drug monitoring could be potentially performed to provide useful information for anti-drug of precision medicine in the future.
Collapse
Affiliation(s)
- Tiao-Lai Huang
- Department of Psychiatry, Chang Gung Memorial Hospital-Kaohsiung Medical Center and Chang Gung University College of Medicine, Kaohsiung, 833401, Taiwan; Genomic and Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833401, Taiwan
| | - Hung Su
- Department of Chemistry, National Kaohsiung Normal University, Kaohsiung, 824004, Taiwan
| | - Jia-Cheng Chen
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan
| | - Szu-Yu Kuo
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan
| | - Chia-Yi Hou
- Department of Clinical Pathology, Chi-Mei Medical Center, Liouying, Tainan, 736402, Taiwan
| | - Shu-Yu Shih
- Department of Emergency Medicine, Chi-Mei Medical Center, Liouying, Tainan, 736402, Taiwan
| | - Kuo-An Chu
- Division of Chest Medicine, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, 813414, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chi-Wei Lee
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan; Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan.
| |
Collapse
|
3
|
Isom M, Desaire H. Skin Surface Sebum Analysis by ESI-MS. Biomolecules 2024; 14:790. [PMID: 39062504 PMCID: PMC11274890 DOI: 10.3390/biom14070790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The skin surface is an important sample source that the metabolomics community has only just begun to explore. Alterations in sebum, the lipid-rich mixture coating the skin surface, correlate with age, sex, ethnicity, diet, exercise, and disease state, making the skin surface an ideal sample source for future noninvasive biomarker exploration, disease diagnosis, and forensic investigation. The potential of sebum sampling has been realized primarily via electrospray ionization mass spectrometry (ESI-MS), an ideal approach to assess the skin surface lipidome. However, a better understanding of sebum collection and subsequent ESI-MS analysis is required before skin surface sampling can be implemented in routine analyses. Challenges include ambiguity in definitive lipid identification, inherent biological variability in sebum production, and methodological, technical variability in analyses. To overcome these obstacles, avoid common pitfalls, and achieve reproducible, robust outcomes, every portion of the workflow-from sample collection to data analysis-should be carefully considered with the specific application in mind. This review details current practices in sebum sampling, sample preparation, ESI-MS data acquisition, and data analysis, and it provides important considerations in acquiring meaningful lipidomic datasets from the skin surface. Forensic researchers investigating sebum as a means for suspect elimination in lieu of adequate fingerprint ridge detail or database matches, as well as clinical researchers interested in noninvasive biomarker exploration, disease diagnosis, and treatment monitoring, can use this review as a guide for developing methods of best-practice.
Collapse
Affiliation(s)
| | - Heather Desaire
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA;
| |
Collapse
|
4
|
Lee CW, Su H, Hsu YW, Su LZ, Wu YH, Hou CY, Shih SY, Shiea J. Rapid Characterization of Undeclared Pharmaceuticals in Herbal Preparations by Ambient Ionization Mass Spectrometry for Emergency Care. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:960-971. [PMID: 38616559 PMCID: PMC11066970 DOI: 10.1021/jasms.4c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/12/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
In Asia, some herbal preparations have been found to be adulterated with undeclared synthetic medicines to increase their therapeutic efficiency. Many of these adulterants were found to be toxic when overdosed and have been documented to bring about severe, even life-threatening acute poisoning events. The objective of this study is to develop a rapid and sensitive ambient ionization mass spectrometric platform to characterize the undeclared toxic adulterated ingredients in herbal preparations. Several common adulterants were spiked into different herbal preparations and human sera to simulate the clinical conditions of acute poisoning. They were then sampled with a metallic probe and analyzed by the thermal desorption-electrospray ionization mass spectrometry. The experimental parameters including sensitivity, specificity, accuracy, and turnaround time were prudently optimized in this study. Since tedious and time-consuming pretreatment of the sample is unnecessary, the toxic adulterants could be characterized within 60 s. The results can help emergency physicians to make clinical judgments and prescribe appropriate antidotes or supportive treatment in a time-sensitive manner.
Collapse
Affiliation(s)
- Chi-Wei Lee
- Institute
of Medical Science and Technology, National
Sun Yat-Sen University, Kaohsiung 804201, Taiwan, ROC
- Rapid
Screening Research Center for Toxicology and Biomedicine, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan, ROC
- Research
Center for Environmental Medicine, Kaohsiung
Medical University, Kaohsiung 80756, Taiwan, ROC
| | - Hung Su
- Department
of Chemistry, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan, ROC
| | - Yi-Wen Hsu
- Institute
of Medical Science and Technology, National
Sun Yat-Sen University, Kaohsiung 804201, Taiwan, ROC
| | - Lin-Zhen Su
- Institute
of Medical Science and Technology, National
Sun Yat-Sen University, Kaohsiung 804201, Taiwan, ROC
| | - Yen-Hung Wu
- Department
of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan, ROC
| | - Chia-Yi Hou
- Department
of Clinical Pathology, Chi-Mei Medical Center, Liouying 73659, Taiwan, ROC
| | - Shu-Yu Shih
- Department
of Emergency Medicine, Chi-Mei Medical Center, Liouying 73659, Taiwan, ROC
| | - Jentaie Shiea
- Department
of Chemistry, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan, ROC
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80756, Taiwan, ROC
- Rapid
Screening Research Center for Toxicology and Biomedicine, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan, ROC
- Research
Center for Environmental Medicine, Kaohsiung
Medical University, Kaohsiung 80756, Taiwan, ROC
| |
Collapse
|
5
|
Géhin C, Tokarska J, Fowler SJ, Barran PE, Trivedi DK. No skin off your back: the sampling and extraction of sebum for metabolomics. Metabolomics 2023; 19:21. [PMID: 36964290 PMCID: PMC10038389 DOI: 10.1007/s11306-023-01982-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/19/2023] [Indexed: 03/26/2023]
Abstract
INTRODUCTION Sebum-based metabolomics (a subset of "sebomics") is a developing field that involves the sampling, identification, and quantification of metabolites found in human sebum. Sebum is a lipid-rich oily substance secreted by the sebaceous glands onto the skin surface for skin homeostasis, lubrication, thermoregulation, and environmental protection. Interest in sebomics has grown over the last decade due to its potential for rapid analysis following non-invasive sampling for a range of clinical and environmental applications. OBJECTIVES To provide an overview of various sebum sampling techniques with their associated challenges. To evaluate applications of sebum for clinical research, drug monitoring, and human biomonitoring. To provide a commentary of the opportunities of using sebum as a diagnostic biofluid in the future. METHODS Bibliometric analyses of selected keywords regarding skin surface analysis using the Scopus search engine from 1960 to 2022 was performed on 12th January 2023. The published literature was compartmentalised based on what the work contributed to in the following areas: the understanding about sebum, its composition, the analytical technologies used, or the purpose of use of sebum. The findings were summarised in this review. RESULTS Historically, about 15 methods of sampling have been used for sebum collection. The sample preparation approaches vary depending on the analytes of interest and are summarised. The use of sebum is not limited to just skin diseases or drug monitoring but also demonstrated for other systemic disease. Most of the work carried out for untargeted analysis of metabolites associated with sebum has been in the recent two decades. CONCLUSION Sebum has a huge potential beyond skin research and understanding how one's physiological state affects or reflects on the skin metabolome via the sebaceous glands itself or by interactions with sebaceous secretion, will open doors for simpler biomonitoring. Sebum acts as a sink to environmental metabolites and has applications awaiting to be explored, such as biosecurity, cross-border migration, localised exposure to harmful substances, and high-throughput population screening. These applications will be possible with rapid advances in volatile headspace and lipidomics method development as well as the ability of the metabolomics community to annotate unknown species better. A key issue with skin surface analysis that remains unsolved is attributing the source of the metabolites found on the skin surface before meaningful biological interpretation.
Collapse
Affiliation(s)
- C Géhin
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester, M1 7DN, UK
| | - J Tokarska
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester, M1 7DN, UK
| | - S J Fowler
- Department of Respiratory Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - P E Barran
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester, M1 7DN, UK
| | - D K Trivedi
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|