1
|
Wicaksono A, Buaboocha T. Genome-wide identification of CAMTA genes and their expression dependence on light and calcium signaling during seedling growth and development in mung bean. BMC Genomics 2024; 25:992. [PMID: 39443876 PMCID: PMC11515718 DOI: 10.1186/s12864-024-10893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Calmodulin-binding transcription activator (CAMTA) is comprised of a group of transcription factors and plays an important role in the Ca2+ signaling pathway, mediating various molecular responses via interactions with other transcription factors and binding to the promoter region of specific genes. Mung beans (Vigna radiata) are one of the most commonly consumed commodities in Asia. To date, CAMTA proteins have not been characterized in this important crop plant. RESULTS Eight paralogous VrCAMTA genes were identified and found to be distributed on five of the 11 chromosomes. The proteins possessed CG-1 DNA-binding domains with bipartite NLS signals, ankyrin domains, CaM-binding IQ motifs, and CaM-binding domain (CaMBD). The 2 kb upstream regions of VrCAMTA genes contained sequence motifs of abscisic acid-responsive elements (ABRE) and ethylene-responsive elements (ERE), and binding sites for transcription factors of the bZIP and bHLH domains. Analysis of RNA-seq data from a public repository revealed ubiquitous expression of the VrCAMTA genes, as VrCAMTA1 was expressed at the highest level in seedling leaves, whereas VrCAMTA8 was expressed at the lowest level, which agreed with the RT-qPCR analysis performed on the first true leaves. On day four after leaf emergence, all VrCAMTA genes were upregulated, with VrCAMTA1 exhibiting the highest degree of upregulation. In darkness on day 4, upregulation was not observed in most VrCAMTA genes, except VrCAMTA7, for which a low degree of upregulation was found, whereas no difference was found in VrCAMTA8 expression between light and dark conditions. Treatment with calcium ionophores enhanced VrCAMTA expression under light and/or dark conditions at different times after leaf emergence, suggesting that calcium signaling is involved in the light-induced upregulation of VrCAMTA gene expression. CONCLUSIONS The expression dependence of nearly all VrCAMTA genes on light and calcium signaling suggests their possible differential but likely complementary roles during the early stages of mung bean growth and development.
Collapse
Affiliation(s)
- Adhityo Wicaksono
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd., Wang Mai, Pathum Wan, Bangkok, 10330, Thailand
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd., Wang Mai, Pathum Wan, Bangkok, 10330, Thailand.
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd., Wang Mai, Pathum Wan, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Thongsima N, Khunsanit P, Navapiphat S, Henry IM, Comai L, Buaboocha T. Sequence-based analysis of the rice CAMTA family: haplotype and network analyses. Sci Rep 2024; 14:23156. [PMID: 39367004 PMCID: PMC11452383 DOI: 10.1038/s41598-024-73668-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
The calmodulin-binding transcription activator (CAMTA) family contributes to stress responses in many plant species. The Oryza sativa ssp. japonica genome harbors seven CAMTA genes; however, intraspecific variation and functional roles of this gene family have not been determined. Here, we comprehensively evaluated the structure and characteristics of the CAMTA genes in japonica rice using bioinformatics approaches and RT-qPCR. Within the CAMTA gene and promoter sequences, 527 single nucleotide polymorphisms were retrieved from 3,024 rice accessions. The CAMTA genes could be subdivided into 5-14 haplotypes. Association analyses between haplotypes and phenotypic traits, such as grain weight and salt stress parameters, identified phenotypic differences between rice subpopulations harboring different CAMTA haplotypes. Co-expression analyses and the identification of CAMTA-specific binding motifs revealed candidate genes regulated by CAMTA. A Gene Ontology functional enrichment analysis of 690 co-expressed genes revealed that CAMTA genes have key roles in defense responses. An interaction analysis identified 30 putative CAMTA interactors. Three genes were identified in co-expression and interaction network analyses, suggesting that they are potentially regulated by CAMTAs. Based on all information obtained together with the phenotypes of the CRISPR-Cas9 knockout mutant lines of three OskCAMTA genes generated, CAMTA1 likely plays important roles in the response to salt stress in rice. Overall, our findings suggest that the CAMTA gene family is involved in development and the salt stress response and reveal candidate target genes, providing a basis for further functional characterization.
Collapse
Affiliation(s)
- Nattana Thongsima
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prasit Khunsanit
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sarunkorn Navapiphat
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Isabelle M Henry
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, 95616, USA
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, 95616, USA
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Calcium decoders and their targets: The holy alliance that regulate cellular responses in stress signaling. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:371-439. [PMID: 36858741 DOI: 10.1016/bs.apcsb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Calcium (Ca2+) signaling is versatile communication network in the cell. Stimuli perceived by cells are transposed through Ca2+-signature, and are decoded by plethora of Ca2+ sensors present in the cell. Calmodulin, calmodulin-like proteins, Ca2+-dependent protein kinases and calcineurin B-like proteins are major classes of proteins that decode the Ca2+ signature and serve in the propagation of signals to different parts of cells by targeting downstream proteins. These decoders and their targets work together to elicit responses against diverse stress stimuli. Over a period of time, significant attempts have been made to characterize as well as summarize elements of this signaling machinery. We begin with a structural overview and amalgamate the newly identified Ca2+ sensor protein in plants. Their ability to bind Ca2+, undergo conformational changes, and how it facilitates binding to a wide variety of targets is further embedded. Subsequently, we summarize the recent progress made on the functional characterization of Ca2+ sensing machinery and in particular their target proteins in stress signaling. We have focused on the physiological role of Ca2+, the Ca2+ sensing machinery, and the mode of regulation on their target proteins during plant stress adaptation. Additionally, we also discuss the role of these decoders and their mode of regulation on the target proteins during abiotic, hormone signaling and biotic stress responses in plants. Finally, here, we have enumerated the limitations and challenges in the Ca2+ signaling. This article will greatly enable in understanding the current picture of plant response and adaptation during diverse stimuli through the lens of Ca2+ signaling.
Collapse
|
4
|
Zaman S, Hassan SSU, Ding Z. The Role of Calmodulin Binding Transcription Activator in Plants under Different Stressors: Physiological, Biochemical, Molecular Mechanisms of Camellia sinensis and Its Current Progress of CAMTAs. Bioengineering (Basel) 2022; 9:759. [PMID: 36550965 PMCID: PMC9774361 DOI: 10.3390/bioengineering9120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Low temperatures have a negative effect on plant development. Plants that are exposed to cold temperatures undergo a cascade of physiological, biochemical, and molecular changes that activate several genes, transcription factors, and regulatory pathways. In this review, the physiological, biochemical, and molecular mechanisms of Camellia sinensis have been discussed. Calmodulin binding transcription activator (CAMTAs) by molecular means including transcription is one of the novel genes for plants' adaptation to different abiotic stresses, including low temperatures. Therefore, the role of CAMTAs in different plants has been discussed. The number of CAMTAs genes discussed here are playing a significant role in plants' adaptation to abiotic stress. The illustrated diagrams representing the mode of action of calcium (Ca2+) with CAMTAs have also been discussed. In short, Ca2+ channels or Ca2+ pumps trigger and induce the Ca2+ signatures in plant cells during abiotic stressors, including low temperatures. Ca2+ signatures act with CAMTAs in plant cells and are ultimately decoded by Ca2+sensors. To the best of our knowledge, this is the first review reporting CAMAT's current progress and potential role in C. sinensis, and this study opens a new road for researchers adapting tea plants to abiotic stress.
Collapse
Affiliation(s)
- Shah Zaman
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
5
|
Li B, He S, Zheng Y, Wang Y, Lang X, Wang H, Fan K, Hu J, Ding Z, Qian W. Genome-wide identification and expression analysis of the calmodulin-binding transcription activator (CAMTA) family genes in tea plant. BMC Genomics 2022; 23:667. [PMID: 36138347 PMCID: PMC9502961 DOI: 10.1186/s12864-022-08894-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022] Open
Abstract
Background As a type of calmodulin binding protein, CAMTAs are widely involved in vegetative and reproductive processes as well as various hormonal and stress responses in plants. To study the functions of CAMTA genes in tea plants, we investigated bioinformatics analysis and performed qRT-PCR analysis of the CAMTA gene family by using the genomes of ‘ShuChaZao’ tea plant cultivar. Results In this study, 6 CsCAMTAs were identified from tea plant genome. Bioinformatics analysis results showed that all CsCAMTAs contained six highly conserved functional domains. Tissue-specific analysis results found that CsCAMTAs played great roles in mediating tea plant aging and flowering periods. Under hormone and abiotic stress conditions, most CsCAMTAs were upregulated at different time points under different treatment conditions. In addition, the expression levels of CsCAMTA1/3/4/6 were higher in cold-resistant cultivar ‘LongJing43’ than in the cold-susceptible cultivar ‘DaMianBai’ at cold acclimation stage, while CsCAMTA2/5 showed higher expression levels in ‘DaMianBai’ than in ‘LongJing43’ during entire cold acclimation periods. Conclusions In brief, the present results revealed that CsCAMTAs played great roles in tea plant growth, development and stress responses, which laid the foundation for deeply exploring their molecular regulation mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08894-x.
Collapse
Affiliation(s)
- Bo Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Shan He
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Yiqian Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Yu Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Xuxu Lang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Huan Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Kai Fan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Jianhui Hu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Zhaotang Ding
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Wenjun Qian
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China. .,Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China.
| |
Collapse
|
6
|
Genome-Wide Analysis of Calmodulin Binding Transcription Activator (CAMTA) Gene Family in Peach ( Prunus persica L. Batsch) and Ectopic Expression of PpCAMTA1 in Arabidopsis camta2,3 Mutant Restore Plant Development. Int J Mol Sci 2022; 23:ijms231810500. [PMID: 36142414 PMCID: PMC9499639 DOI: 10.3390/ijms231810500] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Calmodulin-binding transcription activator (CAMTA) is a transcription factor family containing calmodulin (CaM) binding sites and is involved in plant development. Although CAMTAs in Arabidopsis have been extensively investigated, the functions of CAMTAs remain largely unclear in peaches. In this study, we identified five peach CAMTAs which contained conserved CG-1 box, ANK repeats, CaM binding domain (CaMBD) and IQ motifs. Overexpression in tobacco showed that PpCAMTA1/2/3 were located in the nucleus, while PpCAMTA4 and PpCAMTA5 were located in the plasma membrane. Increased expression levels were observed for PpCAMTA1 and PpCAMTA3 during peach fruit ripening. Expression of PpCAMTA1 was induced by cold treatment and was inhibited by ultraviolet B irradiation (UV-B). Driven by AtCAMTA3 promoter, PpCAMTA1/2/3 were overexpressed in Arabidopsis mutant. Here, we characterized peach PpCAMTA1, representing an ortholog of AtCAMTA3. PpCAMTA1 expression in Arabidopsis complements the developmental deficiencies of the camta2,3 mutant, and restored the plant size to the wild type level. Moreover, overexpressing PpCAMTA1 in camta2,3 mutant inhibited salicylic acid (SA) biosynthesis and expression of SA-related genes, resulting in a susceptibility phenotype to Pst DC3000. Taken together, our results provide new insights for CAMTAs in peach fruit and indicate that PpCAMTA1 is associated with response to stresses during development.
Collapse
|
7
|
Genome-Wide Identification and Characterization of the Calmodulin-Binding Transcription Activator (CAMTA) Gene Family in Plants and the Expression Pattern Analysis of CAMTA3/SR1 in Tomato under Abiotic Stress. Int J Mol Sci 2022; 23:ijms23116264. [PMID: 35682943 PMCID: PMC9181194 DOI: 10.3390/ijms23116264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 12/03/2022] Open
Abstract
Calmodulin-binding transcription activator (CAMTA) plays an important regulatory role in plant growth, development, and stress response. This study identified the phylogenetic relationships of the CAMTA family in 42 plant species using a genome-wide search approach. Subsequently, the evolutionary relationships, gene structures, and conservative structural domain of CAMTA3/SR1 in different plants were analyzed. Meanwhile, in the promoter region, the cis-acting elements, protein clustering interaction, and tissue-specific expression of CAMTA3/SR1 in tomato were identified. The results show that SlCAMTA3/SR1 genes possess numerous cis-acting elements related to hormones, light response, and stress in the promoter regions. SlCAMTA3 might act together with other Ca2+ signaling components to regulate Ca2+-related biological processes. Then, the expression pattern of SlCAMTA3/SR1 was also investigated by quantitative real-time PCR (qRT-PCR) analysis. The results show that SlCAMTA3/SR1 might respond positively to various abiotic stresses, especially Cd stress. The expression of SlCAMTA3/SR1 was scarcely detected in tomato leaf at the seedling and flowering stages, whereas SlCAMTA3/SR1 was highly expressed in the root at the seedling stage. In addition, SlCAMTA3/SR1 had the highest expression levels in flowers at the reproductive stage. Here, we provide a basic reference for further studies about the functions of CAMTA3/SR1 proteins in plants.
Collapse
|
8
|
Wang D, Wu X, Gao S, Zhang S, Wang W, Fang Z, Liu S, Wang X, Zhao C, Tang Y. Systematic Analysis and Identification of Drought-Responsive Genes of the CAMTA Gene Family in Wheat ( Triticum aestivum L.). Int J Mol Sci 2022; 23:ijms23094542. [PMID: 35562932 PMCID: PMC9102227 DOI: 10.3390/ijms23094542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
The calmodulin-binding transcription activator (CAMTA) is a Ca2+/CaM-mediated transcription factor (TF) that modulates plant stress responses and development. Although the investigations of CAMTAs in various organisms revealed a broad range of functions from sensory mechanisms to physiological activities in crops, little is known about the CAMTA family in wheat (Triticum aestivum L.). Here, we systematically analyzed phylogeny, gene expansion, conserved motifs, gene structure, cis-elements, chromosomal localization, and expression patterns of CAMTA genes in wheat. We described and confirmed, via molecular evolution and functional verification analyses, two new members of the family, TaCAMTA5-B.1 and TaCAMTA5-B.2. In addition, we determined that the expression of most TaCAMTA genes responded to several abiotic stresses (drought, salt, heat, and cold) and ABA during the seedling stage, but it was mainly induced by drought stress. Our study provides considerable information about the changes in gene expression in wheat under stress, notably that drought stress-related gene expression in TaCAMTA1b-B.1 transgenic lines was significantly upregulated under drought stress. In addition to providing a comprehensive view of CAMTA genes in wheat, our results indicate that TaCAMTA1b-B.1 has a potential role in the drought stress response induced by a water deficit at the seedling stage.
Collapse
Affiliation(s)
- Dezhou Wang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (D.W.); (S.G.); (S.Z.); (W.W.); (Z.F.); (S.L.)
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing 100097, China
| | - Xian Wu
- Hubei Collaborative Innovation Center for Grain Industry, Agriculture College, Yangtze University, Jingzhou 434023, China; (X.W.); (X.W.)
| | - Shiqin Gao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (D.W.); (S.G.); (S.Z.); (W.W.); (Z.F.); (S.L.)
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing 100097, China
| | - Shengquan Zhang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (D.W.); (S.G.); (S.Z.); (W.W.); (Z.F.); (S.L.)
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing 100097, China
| | - Weiwei Wang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (D.W.); (S.G.); (S.Z.); (W.W.); (Z.F.); (S.L.)
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing 100097, China
| | - Zhaofeng Fang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (D.W.); (S.G.); (S.Z.); (W.W.); (Z.F.); (S.L.)
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing 100097, China
| | - Shan Liu
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (D.W.); (S.G.); (S.Z.); (W.W.); (Z.F.); (S.L.)
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing 100097, China
| | - Xiaoyan Wang
- Hubei Collaborative Innovation Center for Grain Industry, Agriculture College, Yangtze University, Jingzhou 434023, China; (X.W.); (X.W.)
| | - Changping Zhao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (D.W.); (S.G.); (S.Z.); (W.W.); (Z.F.); (S.L.)
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing 100097, China
- Correspondence: (C.Z.); (Y.T.)
| | - Yimiao Tang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (D.W.); (S.G.); (S.Z.); (W.W.); (Z.F.); (S.L.)
- The Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing 100097, China
- Correspondence: (C.Z.); (Y.T.)
| |
Collapse
|
9
|
Iqbal Z, Iqbal MS, Sangpong L, Khaksar G, Sirikantaramas S, Buaboocha T. Comprehensive genome-wide analysis of calmodulin-binding transcription activator (CAMTA) in Durio zibethinus and identification of fruit ripening-associated DzCAMTAs. BMC Genomics 2021; 22:743. [PMID: 34649525 PMCID: PMC8518175 DOI: 10.1186/s12864-021-08022-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Background Fruit ripening is an intricate developmental process driven by a highly coordinated action of complex hormonal networks. Ethylene is considered as the main phytohormone that regulates the ripening of climacteric fruits. Concomitantly, several ethylene-responsive transcription factors (TFs) are pivotal components of the regulatory network underlying fruit ripening. Calmodulin-binding transcription activator (CAMTA) is one such ethylene-induced TF implicated in various stress and plant developmental processes. Results Our comprehensive analysis of the CAMTA gene family in Durio zibethinus (durian, Dz) identified 10 CAMTAs with conserved domains. Phylogenetic analysis of DzCAMTAs, positioned DzCAMTA3 with its tomato ortholog that has already been validated for its role in the fruit ripening process through ethylene-mediated signaling. Furthermore, the transcriptome-wide analysis revealed DzCAMTA3 and DzCAMTA8 as the highest expressing durian CAMTA genes. These two DzCAMTAs possessed a distinct ripening-associated expression pattern during post-harvest ripening in Monthong, a durian cultivar native to Thailand. The expression profiling of DzCAMTA3 and DzCAMTA8 under natural ripening conditions and ethylene-induced/delayed ripening conditions substantiated their roles as ethylene-induced transcriptional activators of ripening. Similarly, auxin-suppressed expression of DzCAMTA3 and DzCAMTA8 confirmed their responsiveness to exogenous auxin treatment in a time-dependent manner. Accordingly, we propose that DzCAMTA3 and DzCAMTA8 synergistically crosstalk with ethylene during durian fruit ripening. In contrast, DzCAMTA3 and DzCAMTA8 antagonistically with auxin could affect the post-harvest ripening process in durian. Furthermore, DzCAMTA3 and DzCAMTA8 interacting genes contain significant CAMTA recognition motifs and regulated several pivotal fruit-ripening-associated pathways. Conclusion Taken together, the present study contributes to an in-depth understanding of the structure and probable function of CAMTA genes in the post-harvest ripening of durian. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08022-1.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Mohammed Shariq Iqbal
- Amity Institute of Biotechnology, Amity University, Lucknow Campus, Lucknow, Uttar Pradesh, India
| | - Lalida Sangpong
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Gholamreza Khaksar
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Supaart Sirikantaramas
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand.,Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Teerapong Buaboocha
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand. .,Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
10
|
Yuan J, Shen C, Chen B, Shen A, Li X. Genome-Wide Characterization and Expression Analysis of CAMTA Gene Family Under Salt Stress in Cucurbita moschata and Cucurbita maxima. Front Genet 2021; 12:647339. [PMID: 34220934 PMCID: PMC8249228 DOI: 10.3389/fgene.2021.647339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
Cucurbita Linn. vegetables have a long history of cultivation and have been cultivated all over the world. With the increasing area of saline–alkali soil, Cucurbita Linn. is affected by salt stress, and calmodulin-binding transcription activator (CAMTA) is known for its important biological functions. Although the CAMTA gene family has been identified in several species, there is no comprehensive analysis on Cucurbita species. In this study, we analyzed the genome of Cucurbita maxima and Cucurbita moschata. Five C. moschata calmodulin-binding transcription activators (CmoCAMTAs) and six C. maxima calmodulin-binding transcription activators (CmaCAMTAs) were identified, and they were divided into three subfamilies (Subfamilies I, II, and III) based on the sequence identity of amino acids. CAMTAs from the same subfamily usually have similar exon–intron distribution and conserved domains (CG-1, TIG, IQ, and Ank_2). Chromosome localization analysis showed that CmoCAMTAs and CmaCAMTAs were unevenly distributed across four and five out of 21 chromosomes, respectively. There were a total of three duplicate gene pairs, and all of which had experienced segmental duplication events. The transcriptional profiles of CmoCAMTAs and CmaCAMTAs in roots, stems, leaves, and fruits showed that these CAMTAs have tissue specificity. Cis-acting elements analysis showed that most of CmoCAMTAs and CmaCAMTAs responded to salt stress. By analyzing the transcriptional profiles of CmoCAMTAs and CmaCAMTAs under salt stress, it was shown that both C. moschata and C. maxima shared similarities against salt tolerance and that it is likely to contribute to the development of these species. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) further demonstrated the key role of CmoCAMTAs and CmaCAMTAs under salt stress. This study provided a theoretical basis for studying the function and mechanism of CAMTAs in Cucurbita Linn.
Collapse
Affiliation(s)
- Jingping Yuan
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China.,Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Changwei Shen
- School of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Bihua Chen
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China.,Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Aimin Shen
- Zhengzhou Vegetable Research Institute (ZVRI), Zhengzhou, China
| | - Xinzheng Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China.,Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| |
Collapse
|
11
|
Iqbal Z, Shariq Iqbal M, Singh SP, Buaboocha T. Ca 2+/Calmodulin Complex Triggers CAMTA Transcriptional Machinery Under Stress in Plants: Signaling Cascade and Molecular Regulation. FRONTIERS IN PLANT SCIENCE 2020; 11:598327. [PMID: 33343600 PMCID: PMC7744605 DOI: 10.3389/fpls.2020.598327] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/30/2020] [Indexed: 05/21/2023]
Abstract
Calcium (Ca2+) ion is a critical ubiquitous intracellular second messenger, acting as a lead currency for several distinct signal transduction pathways. Transient perturbations in free cytosolic Ca2+ ([Ca2+]cyt) concentrations are indispensable for the translation of signals into adaptive biological responses. The transient increase in [Ca2+]cyt levels is sensed by an array of Ca2+ sensor relay proteins such as calmodulin (CaM), eventually leading to conformational changes and activation of CaM. CaM, in a Ca2+-dependent manner, regulates several transcription factors (TFs) that are implicated in various molecular, physiological, and biochemical functions in cells. CAMTA (calmodulin-binding transcription activator) is one such member of the Ca2+-loaded CaM-dependent family of TFs. The present review focuses on Ca2+ as a second messenger, its interaction with CaM, and Ca2+/CaM-mediated CAMTA transcriptional regulation in plants. The review recapitulates the molecular and physiological functions of CAMTA in model plants and various crops, confirming its probable involvement in stress signaling pathways and overall plant development. Studying Ca2+/CaM-mediated CAMTA TF will help in answering key questions concerning signaling cascades and molecular regulation under stress conditions and plant growth, thus improving our knowledge for crop improvement.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | - Mohammed Shariq Iqbal
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Teerapong Buaboocha
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
12
|
Ali E, Raza MA, Cai M, Hussain N, Shahzad AN, Hussain M, Ali M, Bukhari SAH, Sun P. Calmodulin-binding transcription activator (CAMTA) genes family: Genome-wide survey and phylogenetic analysis in flax (Linum usitatissimum). PLoS One 2020; 15:e0236454. [PMID: 32702710 PMCID: PMC7377914 DOI: 10.1371/journal.pone.0236454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/05/2020] [Indexed: 12/21/2022] Open
Abstract
Flax (Linum usitatissimum) is a member of family linaceae with annual growth habit. It is included among those crops which were domesticated very early and has been used in development related studies as a model plant. In plants, Calmodulin-binding transcription activators (CAMTAs) comprise a unique set of Calmodulin-binding proteins. To elucidate the transport mechanism of secondary metabolites in flax, a genome-based study on these transporters was performed. The current investigation identified nine CAMTAs proteins, classified into three categories during phylogenetic analysis. Each group had significant evolutionary role as illustrated by the conservation of gene structures, protein domains and motif organizations over the distinctive phylogenetic classes. GO annotation suggested a link to sequence-specific DNA and protein binding, response to low temperature and transcription regulation by RNA polymerase II. The existence of different hormonal and stress responsive cis-regulatory elements in promotor region may directly correlate with the variation of their transcripts. MicroRNA target analysis revealed that various groups of miRNA families targeted the LuCAMTAs genes. Identification of CAMTA genes, miRNA studies and phylogenetic analysis may open avenues to uncover the underlying functional mechanism of this important family of genes in flax.
Collapse
Affiliation(s)
- Essa Ali
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Mohammad Ammar Raza
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Ming Cai
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Nazim Hussain
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | | - Mubshar Hussain
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Murtaza Ali
- Department of Basic Science & Humanities, University of Engineering and Technology, Mardan, Pakistan
| | | | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Fan H, Li K, Yao F, Sun L, Liu Y. Comparative transcriptome analyses on terpenoids metabolism in field- and mountain-cultivated ginseng roots. BMC PLANT BIOLOGY 2019; 19:82. [PMID: 30782123 PMCID: PMC6381674 DOI: 10.1186/s12870-019-1682-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/11/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND There exist differences in morphological traits and phytochemical compositions between field- and mountain-cultivated Panax ginseng (FCG and MCG), which might be attributed to variations of terpenoids metabolism adapting to different growth conditions. The present work aims to uncover these variations. RESULTS Among 26,648 differentially expressed genes, 496 genes distributed in seven dominant terpenoids pathways were identified. Diterpenoids and triterpenoids biosynthesis genes were significantly higher-expressed in FCG root. Conversely, biosynthesis of carotenoids was significantly more active in MCG root. Additionally, terpenoids backbones, monoterpenoids, sesquiterpenoids, and terpenoid-quinones biosyntheses were neither obviously inclined. Our determination also revealed that there were more gibberellins and steroids accumulated in FCG root which might be responsible for its quick vegetative growth, and enriched abscisic acid and germacrenes as well as protopanaxatriol-type ginsenosides might be major causes of enhanced stress-resistance in MCG root. CONCLUSIONS The study firstly provided an overview of terpenoids metabolism in roots of FCG and MCG in elucidating the underlying mechanisms for their different morphological appearances and phytochemical compositions.
Collapse
Affiliation(s)
- Hang Fan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
| | - Ke Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
- Research Institute of Advanced Eco-Environmental Protection Technology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
| | - Fan Yao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
| | - Liwei Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
| | - Yujun Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing, 100083 China
| |
Collapse
|