1
|
Grüning VK, Lübberstedt T, Frei UK. Doubled Haploid Technology: Opportunities and Challenges for the Rapid Generation of Maize Homozygous Lines. Cold Spring Harb Protoc 2025; 2025:pdb.top108437. [PMID: 39414387 DOI: 10.1101/pdb.top108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Maize is used for multiple purposes, including food, feed, and energy production, and since transitioning to hybrid cultivars at around 1930, maize yield has significantly increased. This is largely due to hybrid vigor, which refers to the superior performance of the progeny from two unrelated inbred parents. Consequently, nearly all maize cultivars grown in the United States are hybrids. Hybrid breeding programs comprise two essential components; namely, inbred line development and hybrid production. Traditionally, developing inbred lines takes a long time, requiring six to 10 generations of self-pollination. The doubled haploid (DH) technology, however, accelerates this process, enabling the derivation of fully homozygous lines within two generations. DH technology is applicable in several crop species and has been most successful in maize due to in vivo maternal haploid induction. Here, we review the origins of the DH technology, and discuss advantages and challenges of the technology as well as applications of DH lines.
Collapse
Affiliation(s)
- Vencke K Grüning
- Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA
| | | | - Ursula K Frei
- Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
2
|
Sunvittayakul P, Wonnapinij P, Wannitikul P, Phanthanong P, Changwitchukarn K, Suttangkakul A, Utthiya S, Phraemuang A, Kongsil P, Prommarit K, Ceballos H, Gomez LD, Kittipadakul P, Vuttipongchaikij S. Genome-wide association studies unveils the genetic basis of cell wall composition and saccharification of cassava pulp. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109312. [PMID: 39579720 DOI: 10.1016/j.plaphy.2024.109312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Cassava (Manihot esculenta Crantz) is a key crop for starch and biofuels production. This study focuses on the polysaccharide composition and saccharification efficiency in cassava pulp through genome-wide association studies (GWAS), targeting the improvement of root characteristics for industrial use. We analyzed 135 partially inbred lines population, performing monosaccharide composition and saccharification analyses to reveal substantial variability in storage root biomass. Among 33 traits examined, 128 significant SNPs were associated with 23 biomass traits, highlighting a complex genetic architecture. Saccharification potential varied from 39 to 95 nmol Glu mg-1 h-1, with high broad-sense heritability for saccharification and several monosaccharide traits, indicating a strong genetic control. Our findings revealed that cassava pulp comprises similar proportions of pectin, hemicellulose, and cellulose in all genotypes. Correlation analysis showed significant associations between cellulose content and saccharification, suggesting that enhancing these traits can improve bioconversion efficiency. Negative correlations with glucose and glucuronic acid in hemicellulose and pectin fractions imply these components may inhibit saccharification. We identified 118 candidate genes associated with 21 traits, with many involved in stress responses affecting cell wall composition. This study verified 12 key candidate genes through sequence and expression analysis, including MANES_07G081200, a YTH domain-containing protein associated with saccharification. Several stress-response genes, such as MANES_04G118600 and MANES_09G174600, were linked to monosaccharide traits, suggesting that adaptive stress pathways influence biomass characteristics. This study provides insights into the genetic determinants of cassava pulp's saccharification and polysaccharide composition, aiding breeding efforts to develop cassava varieties optimized for industrial applications.
Collapse
Affiliation(s)
- Pongsakorn Sunvittayakul
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Pitchaporn Wannitikul
- Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Phongnapha Phanthanong
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Kanokpoo Changwitchukarn
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Anongpat Suttangkakul
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Supanut Utthiya
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Apimon Phraemuang
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Pasajee Kongsil
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studies of Agriculture and Food (CASAF), Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Kamonchat Prommarit
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Hernan Ceballos
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Leonardo D Gomez
- Centre of Novel Agricultural Products (CNAP), Department of Biology, University of York, York, United Kingdom
| | - Piya Kittipadakul
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studies of Agriculture and Food (CASAF), Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand; Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
3
|
Villwock SS, Li L, Jannink JL. Carotenoid-carbohydrate crosstalk: evidence for genetic and physiological interactions in storage tissues across crop species. THE NEW PHYTOLOGIST 2024; 244:1709-1722. [PMID: 39400352 DOI: 10.1111/nph.20196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024]
Abstract
Carotenoids play essential roles in photosynthesis, photoprotection, and human health. Efforts to increase carotenoid content in several staple crops have been successful through both conventional selection and genetic engineering methods. Interestingly, in some cases, altering carotenoid content has had unexpected effects on other aspects of plant metabolism, impacting traits like sugar content, dry matter percentage, fatty acid content, stress tolerance, and phytohormone concentrations. Studies across several diverse crop species have identified negative correlations between carotenoid and starch contents, as well as positive correlations between carotenoids and soluble sugars. Collectively, these reports suggest a metabolic interaction between carotenoids and carbohydrates. We synthesize evidence pointing to four hypothesized mechanisms: (1) direct competition for precursors; (2) physical interactions in plastids; (3) influences of sugar or apocarotenoid signaling networks; and (4) nonmechanistic population or statistical sources of correlations. Though the carotenoid biosynthesis pathway is well understood, the regulation and interactions of carotenoids, especially in nonphotosynthetic tissues, remain unclear. This topic represents an underexplored interplay between primary and secondary metabolism where further research is needed.
Collapse
Affiliation(s)
- Seren S Villwock
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | - Li Li
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Plant, Soil and Nutrition Laboratory, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Jean-Luc Jannink
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Plant, Soil and Nutrition Laboratory, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| |
Collapse
|
4
|
da Conceicão LV, Cortes DFM, Klauser D, Robinson M, de Oliveira EJ. New protocol for rapid cassava multiplication in field conditions: a perspective on speed breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1258101. [PMID: 37753503 PMCID: PMC10518405 DOI: 10.3389/fpls.2023.1258101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Despite the economic and social importance, high-yielding cassava cultivars are only released after extensive research, mainly due to the low multiplication rate. This study aimed to assess the impact of using smaller-sized seed cuttings treated with agrochemicals (8MP) compared to the conventional planting size (16 cm) on genetic parameters, agronomic performance, and the ranking of cassava clones based on yield and growth attributes. The evaluation was carried out in clonal evaluation trial (CET), preliminary yield trial (PYT), and uniform yield trials (UYT). Additionally, a new selection scheme for cassava breeding programs was proposed. A total of 169 clones were evaluated, including 154 improved clones at different stages of selection and 15 local varieties used as checks. Field trials were conducted using both sizes of propagative material (8MP and 16 cm) in each phase of the breeding program. The data were analyzed using mixed models, considering the random effects of genotype and genotype-environment interaction (G×E) to determine variances and heritabilities. Bland-Altman concordance and correlation analysis of selection indices were employed to examine the consistency in the ranking of cassava clones using different seed cutting sizes. The distribution of variance components, heritabilities, means, and range of the 8MP and 16 cm trials in different phases of the cassava breeding program exhibited remarkable similarity, thereby enabling a comparative assessment of similar genetic effects. With a selection intensity of 30%, the concordance in clone ranking was 0.41, 0.57, and 0.85 in CET, PYT, and UYT trials, respectively, when comparing the selection based on 8MP and 16 cm trials. It is worth noting that the ranking of the top 15% remained largely unchanged. Based on the findings, proposed changes in the cassava selection scheme involve increasing the number of trials starting from the CET phase, early incorporation of G×E interaction, elimination of the PYT trial, reduction of the breeding cycle from 5 to 3 years, and a decrease in the time required for variety development from 11 to 9 years. These modifications are expected to lead to cost reduction and enhance the effectiveness of cassava breeding programs.
Collapse
Affiliation(s)
- Leila Verena da Conceicão
- Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, Cruz das Almas, Bahia, Brazil
| | | | - Dominik Klauser
- Syngenta Foundation for Sustainable Agriculture, Basel, Switzerland
| | - Michael Robinson
- Syngenta Foundation for Sustainable Agriculture, Basel, Switzerland
| | | |
Collapse
|
5
|
Rabbi IY, Kayondo SI, Bauchet G, Yusuf M, Aghogho CI, Ogunpaimo K, Uwugiaren R, Smith IA, Peteti P, Agbona A, Parkes E, Lydia E, Wolfe M, Jannink JL, Egesi C, Kulakow P. Genome-wide association analysis reveals new insights into the genetic architecture of defensive, agro-morphological and quality-related traits in cassava. PLANT MOLECULAR BIOLOGY 2022; 109:195-213. [PMID: 32734418 PMCID: PMC9162993 DOI: 10.1007/s11103-020-01038-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/20/2020] [Indexed: 05/05/2023]
Abstract
More than 40 QTLs associated with 14 stress-related, quality and agro-morphological traits were identified. A catalogue of favourable SNP markers for MAS and a list of candidate genes are provided. Cassava (Manihot esculenta) is one of the most important starchy root crops in the tropics due to its adaptation to marginal environments. Genetic progress in this clonally propagated crop can be accelerated through the discovery of markers and candidate genes that could be used in cassava breeding programs. We carried out a genome-wide association study (GWAS) using a panel of 5130 clones developed at the International Institute of Tropical Agriculture-Nigeria. The population was genotyped at more than 100,000 SNP markers via genotyping-by-sequencing (GBS). Genomic regions underlying genetic variation for 14 traits classified broadly into four categories: biotic stress (cassava mosaic disease and cassava green mite severity); quality (dry matter content and carotenoid content) and plant agronomy (harvest index and plant type) were investigated. We also included several agro-morphological traits related to leaves, stems and roots with high heritability. In total, 41 significant associations were uncovered. While some of the identified loci matched with those previously reported, we present additional association signals for the traits. We provide a catalogue of favourable alleles at the most significant SNP for each trait-locus combination and candidate genes occurring within the GWAS hits. These resources provide a foundation for the development of markers that could be used in cassava breeding programs and candidate genes for functional validation.
Collapse
Affiliation(s)
- Ismail Yusuf Rabbi
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria.
| | - Siraj Ismail Kayondo
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | | | - Muyideen Yusuf
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Cynthia Idhigu Aghogho
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Kayode Ogunpaimo
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Ruth Uwugiaren
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Ikpan Andrew Smith
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Prasad Peteti
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Afolabi Agbona
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Elizabeth Parkes
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Ezenwaka Lydia
- National Root Crops Research Institute (NRCRI), PMB 7006, Umudike, 440221, Nigeria
| | - Marnin Wolfe
- Section on Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Jean-Luc Jannink
- Section on Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14850, USA
- United States Department of Agriculture - Agriculture Research Service, Ithaca, NY, 14850, USA
| | - Chiedozie Egesi
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
- National Root Crops Research Institute (NRCRI), PMB 7006, Umudike, 440221, Nigeria
- Global Development Department, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Peter Kulakow
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| |
Collapse
|
6
|
A population based expression atlas provides insights into disease resistance and other physiological traits in cassava (Manihot esculenta Crantz). Sci Rep 2021; 11:23520. [PMID: 34876620 PMCID: PMC8651776 DOI: 10.1038/s41598-021-02794-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Cassava, a food security crop in Africa, is grown throughout the tropics and subtropics. Although cassava can provide high productivity in suboptimal conditions, the yield in Africa is substantially lower than in other geographies. The yield gap is attributable to many challenges faced by cassava in Africa, including susceptibility to diseases and poor soil conditions. In this study, we carried out 3’RNA sequencing on 150 accessions from the National Crops Resources Research Institute, Uganda for 5 tissue types, providing population-based transcriptomics resources to the research community in a web-based queryable cassava expression atlas. Differential expression and weighted gene co-expression network analysis were performed to detect 8820 significantly differentially expressed genes (DEGs), revealing similarity in expression patterns between tissue types and the clustering of detected DEGs into 18 gene modules. As a confirmation of data quality, differential expression and pathway analysis targeting cassava mosaic disease (CMD) identified 27 genes observed in the plant–pathogen interaction pathway, several previously identified CMD resistance genes, and two peroxidase family proteins different from the CMD2 gene. Present research work represents a novel resource towards understanding complex traits at expression and molecular levels for the development of resistant and high-yielding cassava varieties, as exemplified with CMD.
Collapse
|
7
|
Regional Heritability Mapping of Quantitative Trait Loci Controlling Traits Related to Growth and Productivity in Popcorn (Zea mays L.). PLANTS 2021; 10:plants10091845. [PMID: 34579378 PMCID: PMC8466968 DOI: 10.3390/plants10091845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022]
Abstract
The method of regional heritability mapping (RHM) has become an important tool in the identification of quantitative trait loci (QTLs) controlling traits of interest in plants. Here, RHM was first applied in a breeding population of popcorn, to identify the QTLs and candidate genes involved in grain yield, plant height, kernel popping expansion, and first ear height, as well as determining the heritability of each significant genomic region. The study population consisted of 98 S1 families derived from the 9th recurrent selection cycle (C-9) of the open-pollinated variety UENF-14, which were genetically evaluated in two environments (ENV1 and ENV2). Seventeen and five genomic regions were mapped by the RHM method in ENV1 and ENV2, respectively. Subsequent genome-wide analysis based on the reference genome B73 revealed associations with forty-six candidate genes within these genomic regions, some of them are considered to be biologically important due to the proteins that they encode. The results obtained by the RHM method have the potential to contribute to knowledge on the genetic architecture of the growth and yield traits of popcorn, which might be used for marker-assisted selection in breeding programs.
Collapse
|
8
|
A Low Resolution Epistasis Mapping Approach To Identify Chromosome Arm Interactions in Allohexaploid Wheat. G3-GENES GENOMES GENETICS 2019; 9:675-684. [PMID: 30455184 PMCID: PMC6404624 DOI: 10.1534/g3.118.200646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epistasis is an important contributor to genetic variance. In inbred populations, pairwise epistasis is present as additive by additive interactions. Testing for epistasis presents a multiple testing problem as the pairwise search space for modest numbers of markers is large. Single markers do not necessarily track functional units of interacting chromatin as well as haplotype based methods do. To harness the power of multiple markers while minimizing the number of tests conducted, we present a low resolution test for epistatic interactions across whole chromosome arms. Epistasis covariance matrices were constructed from the additive covariances of individual chromosome arms. These covariances were subsequently used to estimate an epistatic variance parameter while correcting for background additive and epistatic effects. We find significant epistasis for 2% of the interactions tested for four agronomic traits in a winter wheat breeding population. Interactions across homeologous chromosome arms were identified, but were less abundant than other chromosome arm pair interactions. The homeologous chromosome arm pair 4BL/4DL showed a strong negative relationship between additive and interaction effects that may be indicative of functional redundancy. Several chromosome arms appeared to act as hubs in an interaction network, suggesting that they may contain important regulatory factors. The differential patterns of epistasis across different traits demonstrate that detection of epistatic interactions is robust when correcting for background additive and epistatic effects in the population. The low resolution epistasis mapping method presented here identifies important epistatic interactions with a limited number of statistical tests at the cost of low precision.
Collapse
|
9
|
Resende RT, de Resende MDV, Azevedo CF, Fonseca E Silva F, Melo LC, Pereira HS, Souza TLPO, Valdisser PAMR, Brondani C, Vianello RP. Genome-Wide Association and Regional Heritability Mapping of Plant Architecture, Lodging and Productivity in Phaseolus vulgaris. G3 (BETHESDA, MD.) 2018; 8:2841-2854. [PMID: 29967054 PMCID: PMC6071601 DOI: 10.1534/g3.118.200493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
Abstract
The availability of high-density molecular markers in common bean has allowed to explore the genetic basis of important complex agronomic traits with increased resolution. Genome-Wide Association Studies (GWAS) and Regional Heritability Mapping (RHM) are two analytical approaches for the detection of genetic variants. We carried out GWAS and RHM for plant architecture, lodging and productivity across two important growing environments in Brazil in a germplasm of 188 common bean varieties using DArTseq genotyping strategies. The coefficient of determination of G × E interaction (c2int ) was equal to 17, 21 and 41%, respectively for the traits architecture, lodging, and productivity. Trait heritabilities were estimated at 0.81 (architecture), 0.79 (lodging) and 0.43 (productivity), and total genomic heritability accounted for large proportions (72% to ≈100%) of trait heritability. At the same probability threshold, three marker-trait associations were detected using GWAS, while RHM detected eight QTL encompassing 145 markers along five chromosomes. The proportion of genomic heritability explained by RHM was considerably higher (35.48 to 58.02) than that explained by GWAS (28.39 to 30.37). In general, RHM accounted for larger fractions of the additive genetic variance being captured by markers effects inside the defined regions. Nevertheless, a considerable proportion of the heritability is still missing (∼42% to ∼64%), probably due to LD between markers and genes and/or rare allele variants not sampled. RHM in autogamous species had the potential to identify larger-effect QTL combining allelic variants that could be effectively incorporated into whole-genome prediction models and tracked through breeding generations using marker-assisted selection.
Collapse
Affiliation(s)
| | - Marcos Deon V de Resende
- Department of Forestry
- Department of Statistics, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
- EMBRAPA Florestas, Colombo, PR 83411-000, Brazil
| | - Camila F Azevedo
- Department of Statistics, Universidade Federal de Viçosa, Viçosa, MG 36570-000, Brazil
| | | | | | | | | | | | - Claudio Brondani
- Laboratory of Biotechnology, EMBRAPA Arroz e Feijão, Santo Antônio de Goiás, GO 75375-000, Brazil
| | - Rosana Pereira Vianello
- Laboratory of Biotechnology, EMBRAPA Arroz e Feijão, Santo Antônio de Goiás, GO 75375-000, Brazil
| |
Collapse
|