1
|
Liu S, Xiang M, Wang X, Li J, Cheng X, Li H, Singh RP, Bhavani S, Huang S, Zheng W, Li C, Yuan F, Wu J, Han D, Kang Z, Zeng Q. Development and application of the GenoBaits WheatSNP16K array to accelerate wheat genetic research and breeding. PLANT COMMUNICATIONS 2025; 6:101138. [PMID: 39318097 PMCID: PMC11783889 DOI: 10.1016/j.xplc.2024.101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Single-nucleotide polymorphisms (SNPs) are widely used as molecular markers for constructing genetic linkage maps in wheat. Compared with available SNP-based genotyping platforms, a genotyping by target sequencing (GBTS) system with capture-in-solution (liquid chip) technology has become the favored genotyping technology because it is less demanding and more cost effective, flexible, and user-friendly. In this study, a new GenoBaits WheatSNP16K (GBW16K) GBTS array was designed using datasets generated by the wheat 660K SNP array and resequencing platforms in our previous studies. The GBW16K array contains 14 868 target SNP regions that are evenly distributed across the wheat genome, and 37 669 SNPs in these regions can be identified in a diversity panel consisting of 239 wheat accessions from around the world. Principal component and neighbor-joining analyses using the called SNPs are consistent with the pedigree information and geographic distributions or ecological environments of the accessions. For the GBW16K marker panel, the average genetic diversity among the 239 accessions is 0.270, which is sufficient for linkage map construction and preliminary mapping of targeted genes or quantitative trait loci (QTLs). A genetic linkage map, constructed using the GBW16K array-based genotyping of a recombinant inbred line population derived from a cross of the CIMMYT wheat line Yaco"S" and the Chinese landrace Mingxian169, enables the identification of Yr27, Yr30, and QYr.nwafu-2BL.4 for adult-plant resistance to stripe rust from Yaco"S" and of Yr18 from Mingxian169. QYr.nwafu-2BL.4 is different from any previously reported gene/QTL. Three haplotypes and six candidate genes have been identified for QYr.nwafu-2BL.4 on the basis of haplotype analysis, micro-collinearity, gene annotation, RNA sequencing, and SNP data. This array provides a new tool for wheat genetic analysis and breeding studies and for achieving durable control of wheat stripe rust.
Collapse
Affiliation(s)
- Shengjie Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingjie Xiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoting Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaqi Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiangrui Cheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huaizhou Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Estado de México 56237, Mexico; Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Estado de México 56237, Mexico
| | - Shuo Huang
- Key Laboratory of Plant Design, Chinese Academy of Sciences, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200000, China
| | - Weijun Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunlian Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengping Yuan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianhui Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dejun Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Qingdong Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Yan H, Zhu J, Jin Y, Bai X, Zeng Q, Gao H, Ma J, Huang L, Kang Z, Zhan G. Evaluation of Stripe Rust Resistance and Chip Detection Resistance Genes in 286 Xinjiang Wheat Cultivars and Breeding Lines. PLANT DISEASE 2024; 108:3269-3278. [PMID: 38937931 DOI: 10.1094/pdis-04-24-0780-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Wheat stripe rust is a destructive disease worldwide, caused by Puccinia striiformis f. sp. tritici (Pst). Resistance breeding is the most effective method of controlling stripe rust. Xinjiang is a relatively independent epidemic region of wheat stripe rust in China. In recent years, wheat stripe rust in this area has shown an upward trend. Therefore, the purpose of this study was to evaluate the resistance level of wheat cultivars (lines) to the prevalent Pst races and determine the genetic background of stripe rust resistance genes in Xinjiang. Six predominant Pst races in China were used to study resistance of 286 wheat cultivars (lines) at both the seedling stage under controlled conditions and the adult-plant stage under field conditions. In the seedling tests, 175 (61.19%) entries were resistant to the race CYR23, 125 (43.71%) to CYR29, 153 (53.50%) to CYR31, 88 (30.77%) to CYR32, 174 (60.84%) to CYR33, and 98 (34.27%) to CYR34. Among the resistant entries, 23 (8.04%) were resistant to all six races. In the field test, 135 (47.20%) entries were resistant to the tested mixed races. Through comparing the responses in the seedling and adult-plant stages, 109 (38.11%) entries were found to have adult-plant resistance (APR), and 14 (4.90%) entries have all-stage resistance (ASR). The 286 wheat entries were also tested using a wheat breeder chip containing 12 Yr resistance loci. Among these entries, 44 (15.38%) were found to have a single gene, 221 (77.27%) have two or more genes, and 21 (7.34%) have none of the 12 genes, including 144 (50.35%) with Yr30 and 5 (1.75%) with YrSP. Entries with two or more genes have stronger resistance to Pst. Overall, the majority of entries have all-stage and/or adult-plant resistance, but their genes for resistance in addition to the 12 tested Yr genes need to be determined. It is also necessary to introduce more effective resistance genes in the breeding programs to improve stripe rust resistance in wheat cultivars in Xinjiang.
Collapse
Affiliation(s)
- Haohao Yan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianing Zhu
- College of Life Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Yongjin Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingxuan Bai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingdong Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haifeng Gao
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - Jinbiao Ma
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gangming Zhan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Zhou X, Wang Y, Luo Y, Shuai J, Jia G, Chen H, Zhang L, Chen H, Li X, Huang K, Yang S, Wang M, Ren Y, Li G, Chen X. Genome-wide mapping of quantitative trait loci conferring resistance to stripe rust in spring wheat line PI 660072. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:255. [PMID: 39443304 DOI: 10.1007/s00122-024-04760-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
KEY MESSAGE Two major QTL for resistance to stripe rust were mapped on chromosome 2BL and 4BL in spring wheat PI 660072, and their KASP markers were developed. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat worldwide. Identifying resistance genes is crucial for developing resistant cultivars to control the disease. Spring wheat PI 660072 (Triticum aestivum) has been identified to possess both adult-plant resistance (APR) and all-stage resistance (ASR) to stripe rust. To elucidate the genetic basis of the resistance in PI 660072, a mapping population consisting of 211 F5-F7 recombinant-inbred lines (RILs) was developed from a cross of PI 660072 with susceptible spring wheat Avocet S. The mapping population was phenotyped for stripe rust responses across five field environments from 2020 to 2022 and genotyped using the 15 K SNP (single nucleotide polymorphism) array to map stripe rust resistance loci. The mapping population was also tested at the seedling stage with predominant Chinese Pst races CYR31, CYR32, CYR34 and PST-YX1-3-1 in the greenhouse. Stripe rust resistance genes were identified using the quantitative trait locus (QTL) mapping approach. Two QTL were identified with QYrPI660072.swust-2BL mapped on the long arm of chromosome 2B for ASR and QYrPI660072.swust-4BL on the long arm of chromosome 4B for APR. To facilitate marker-assisted selection breeding, Kompetitive allele specific PCR (KASP) markers, KASP-1269 for QYrPI660072.swust-2BL and KASP-3209 for QYrPI660072.swust-4BL, were developed. These markers could be used to introgress the effective resistance QTL into new wheat cultivars.
Collapse
Affiliation(s)
- Xinli Zhou
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| | - Yuqi Wang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Yuqi Luo
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jie Shuai
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Guoyun Jia
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Hongyang Chen
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Liangqi Zhang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Hao Chen
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Xin Li
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Kebing Huang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Suizhuang Yang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Yong Ren
- Mianyang Institute of Agricultural Science/Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang, 621023, Sichuan, China
| | - Gang Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.
- Wheat Health, Genetics, and Quality Research Unit, USDA-ARS, Pullman, WA, 99164-6430, USA.
| |
Collapse
|
4
|
Xiang M, Tian B, Cao J, Liu S, Zhou C, Wang X, Zhang Y, Li J, Yuan X, Wan J, Yu R, Zheng W, Wu J, Zeng Q, Kang Z, Li C, Cui F, Han D. Yr29 combined with QYr.nwafu-4BL.3 confers durable resistance to stripe rust in wheat cultivar Jing 411. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:252. [PMID: 39425797 DOI: 10.1007/s00122-024-04758-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
KEY MESSAGE The combination of a QTL on chromosome arm 4BL and Yr29 provides durable resistance with no significant yield penalty. Wheat stripe rust or yellow rust (YR), caused by Puccinia striiformis f. sp. tritici (Pst), causes substantial yield reductions globally, but losses can be minimized by using resistance genes. Chinese wheat cultivar Jing 411 (J411) has continued to display an acceptable level of adult-plant resistance (APR) to YR in varied field conditions since its release in the 1990s. A recombinant inbred line (RIL) population comprising 187 lines developed from a cross of J411 and Kenong 9204 (KN9204) was evaluated in multiple environments to identify genomic regions carrying genes for YR resistance. A total of five quantitative trait loci (QTL) on chromosome arm 1BL, 3BS, 4BL, 6BS, and 7BL from J411 and two QTL on 3DS and 7DL from KN9204 were detected using inclusive composite interval mapping with the wheat 660 K SNP array. QYr.nwafu-1BL.5 and QYr.nwafu-4BL.3 from J411 were robust and showed similar effects in all environments. QYr.nwafu-1BL.5 was likely the pleiotropic gene of Yr29/Lr46. QYr.nwafu-4BL.3 was located within a 1.0 cM interval delimited by KASP markers AX-111609222 and AX-89755491. Based on haplotype analysis, Yr29 and QYr.nwafu-4BL.3 were identified as genetic components of quantitative resistance in a number of wheat cultivars. Moreover, RILs with Yr29 and QYr.nwafu-4BL.3 individually or when combined showed higher resistance to YR in rust nurseries compared with RILs without them, and there was no negative effect of their presence on agronomic traits under rust-free conditions. These results suggest that effective polymerization strategy is important for breeding high yielding and durable resistance cultivars.
Collapse
Affiliation(s)
- Mingjie Xiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Bo Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jianghao Cao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shengjie Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Caie Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoting Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yibo Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jiale Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xunying Yuan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jufen Wan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Rui Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Weijun Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jianhui Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chunlian Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Fa Cui
- College of Agriculture/Key Laboratory of Molecular Module-Based Breeding of High Yield and AbioticResistant Plants, Ludong University, Universities of Shandong, Yantai, Shandong, 264025, People's Republic of China.
| | - Dejun Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
5
|
Cross JF, Cobo N, Drewry DT. Non-invasive diagnosis of wheat stripe rust progression using hyperspectral reflectance. FRONTIERS IN PLANT SCIENCE 2024; 15:1429879. [PMID: 39323538 PMCID: PMC11422131 DOI: 10.3389/fpls.2024.1429879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024]
Abstract
Wheat stripe rust (WSR), a fungal disease capable of inflicting severe crop loss, threatens most of global wheat production. Breeding for genetic resistance is the primary defense against stripe rust infection. Further development of rust-resistant wheat varieties depends on the ability to accurately and rapidly quantify rust resilience. In this study we demonstrate the ability of visible through shortwave infrared reflectance spectroscopy to effectively provide high-throughput classification of wheat stripe rust severity and identify important spectral regions for classification accuracy. Random forest models were developed using both leaf-level and canopy-level hyperspectral reflectance observations collected across a breeding population that was scored for WSR severity using 10 and 5 severity classes, respectively. The models were able to accurately diagnose scored disease severity class across these fine scoring scales between 45-52% of the time, which improved to 79-96% accuracy when allowing scores to be off-by-one. The canopy-level model demonstrated higher accuracy and distinct spectral characteristics relative to the leaf-level models, pointing to the use of this technology for field-scale monitoring. Leaf-level model performance was strong despite clear variation in scoring conducted between wheat growth stages. Two approaches to reduce predictor and model complexity, principal component dimensionality reduction and backward feature elimination, were applied here. Both approaches demonstrated that model classification skill could remain high while simplifying high-dimensional hyperspectral reflectance predictors, with parsimonious models having approximately 10 unique components or wavebands. Through the use of a high-resolution infection severity scoring methodology this study provides one of the most rigorous tests of the use of hyperspectral reflectance observations for WSR classification. We demonstrate that machine learning in combination with a few carefully-selected wavebands can be leveraged for precision remote monitoring and management of WSR to limit crop damage and to aid in the selection of resilient germplasm in breeding programs.
Collapse
Affiliation(s)
- James F Cross
- Department of Food, Agricultural, and Biological Engineering, Ohio State University, Columbus, OH, United States
- Environmental Sciences Graduate Program, Ohio State University, Columbus, OH, United States
| | - Nicolas Cobo
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
| | - Darren T Drewry
- Department of Food, Agricultural, and Biological Engineering, Ohio State University, Columbus, OH, United States
- Environmental Sciences Graduate Program, Ohio State University, Columbus, OH, United States
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH, United States
- Translational Data Analytics Institute, Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Spychała J, Tomkowiak A, Noweiska A, Bobrowska R, Rychel-Bielska S, Bocianowski J, Wolko Ł, Kowalczewski PŁ, Nowicki M, Kwiatek MT. Expression patterns of candidate genes for the Lr46/Yr29 "slow rust" locus in common wheat (Triticum aestivum L.) and associated miRNAs inform of the gene conferring the Puccinia triticina resistance trait. PLoS One 2024; 19:e0309944. [PMID: 39240941 PMCID: PMC11379320 DOI: 10.1371/journal.pone.0309944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/22/2024] [Indexed: 09/08/2024] Open
Abstract
Leaf rust caused by Puccinia triticina (Pt) is one of the most impactful diseases causing substantial losses in common wheat (Triticum aestivum L.) crops. In adult plants resistant to Pt, a horizontal adult plant resistance (APR) is observed: APR protects the plant against multiple pathogen races and is distinguished by durable persistence under production conditions. The Lr46/Yr29 locus was mapped to chromosome 1B of common wheat genome, but the identity of the underlying gene has not been demonstrated although several candidate genes have been proposed. This study aimed to analyze the expression of nine candidate genes located at the Lr46/Yr29 locus and their four complementary miRNAs (tae-miR5384-3p, tae-miR9780, tae-miR9775, and tae-miR164), in response to Pt infection. The plant materials tested included five reference cultivars in which the molecular marker csLV46G22 associated with the Lr46/Yr29-based Pt resistance was identified, as well as one susceptible control cultivar. Biotic stress was induced in adult plants by inoculation with fungal spores under controlled conditions. Plant material was sampled before and at 6, 12, 24, 48 hours post inoculation (hpi). Differences in expression of candidate genes at the Lr46/Yr29 locus were analyzed by qRT-PCR and showed that the expression of the genes varied at the analyzed time points. The highest expression of Lr46/Yr29 candidate genes (Lr46-Glu1, Lr46-Glu2, Lr46-Glu3, Lr46-RLK1, Lr46-RLK2, Lr46-RLK3, Lr46-RLK4, Lr46-Snex, and Lr46-WRKY) occurred at 12 and 24 hpi and such expression profiles were obtained only for one candidate gene among the nine genes analyzed (Lr46-Glu2), indicating that it may be a contributing factor in the resistance response to Pt infection.
Collapse
Affiliation(s)
- Julia Spychała
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Poznań Division, Department of Oilseed Crops, Poznań, Poland
| | - Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - Aleksandra Noweiska
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Poznań Division, Department of Oilseed Crops, Poznań, Poland
| | - Roksana Bobrowska
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - Sandra Rychel-Bielska
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | - Łukasz Wolko
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | | | - Marcin Nowicki
- Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Michał Tomasz Kwiatek
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
- Plant Breeding and Acclimatization Institute - National Research Institute in Radzików, Radzikow, Poland
| |
Collapse
|
7
|
Xiao B, Qie Y, Jin Y, Yu N, Sun N, Liu W, Wang X, Wang J, Qian Z, Zhao Y, Yuan T, Li L, Wang F, Liu C, Ma P. Genetic basis of an elite wheat cultivar Guinong 29 with harmonious improvement between multiple diseases resistance and other comprehensive traits. Sci Rep 2024; 14:14336. [PMID: 38906938 PMCID: PMC11192888 DOI: 10.1038/s41598-024-64998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
Fungal diseases, such as powdery mildew and rusts, significantly affect the quality and yield of wheat. Pyramiding diverse types of resistance genes into cultivars represents the preferred strategy to combat these diseases. Moreover, achieving collaborative improvement between diseases resistance, abiotic stress, quality, and agronomic and yield traits is difficult in genetic breeding. In this study, the wheat cultivar, Guinong 29 (GN29), showed high resistance to powdery mildew and stripe rust at both seedling and adult plant stages, and was susceptible to leaf rust at the seedling stage but slow resistance at the adult-plant stage. Meanwhile, it has elite agronomic and yield traits, indicating promising coordination ability among multiple diseases resistance and other key breeding traits. To determine the genetic basis of these elite traits, GN29 was tested with 113 molecular markers for 98 genes associated with diseases resistance, stress tolerance, quality, and adaptability. The results indicated that two powdery mildew resistance (Pm) genes, Pm2 and Pm21, confirmed the outstanding resistance to powdery mildew through genetic analysis, marker detection, genomic in situ hybridization (GISH), non-denaturing fluorescence in situ hybridization (ND-FISH), and homology-based cloning; the stripe rust resistance (Yr) gene Yr26 and leaf rust resistance (Lr) genes Lr1 and Lr46 conferred the stripe rust and slow leaf rust resistance in GN29, respectively. Meanwhile, GN29 carries dwarfing genes Rht-B1b and Rht-D1a, vernalization genes vrn-A1, vrn-B1, vrn-D1, and vrn-B3, which were consistent with the phenotypic traits in dwarf characteristic and semi-winter property; carries genes Dreb1 and Ta-CRT for stress tolerance to drought, salinity, low temperature, and abscisic acid (ABA), suggesting that GN29 may also have elite stress-tolerance ability; and carries two low-molecular-weight glutenin subunit genes Glu-B3b and Glu-B3bef which contributed to high baking quality. This study not only elucidated the genetic basis of the elite traits in GN29 but also verified the capability for harmonious improvement in both multiple diseases resistance and other comprehensive traits, offering valuable information for breeding breakthrough-resistant cultivars.
Collapse
Affiliation(s)
- Bei Xiao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Yanmin Qie
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Key Laboratory of Crop Genetic and Breeding, Shijiazhuang, 050035, China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ningning Yu
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Nina Sun
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Wei Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Xiaolu Wang
- Crop Research Institute, Shandong Academy of Agriculture Sciences, Jinan, 250100, China
| | - Jiaojiao Wang
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Zejun Qian
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ya Zhao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Tangyu Yuan
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Linzhi Li
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Fengtao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agriculture Sciences, Jinan, 250100, China.
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China.
| |
Collapse
|
8
|
Zhou X, Jia G, Luo Y, Li X, Cai L, Chen X, Kang Z. Fine mapping of QYrsv.swust-1BL for resistance to stripe rust in durum wheat Svevo. FRONTIERS IN PLANT SCIENCE 2024; 15:1395223. [PMID: 38933466 PMCID: PMC11204296 DOI: 10.3389/fpls.2024.1395223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/06/2024] [Indexed: 06/28/2024]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a serious disease that affects wheat worldwide. There is a great need to develop cultivars with combinations of all-stage resistance (ASR) and adult-plant resistance (APR) genes for sustainable control of the disease. QYrsv.swust-1BL in the Italian durum wheat (Triticum turgidum ssp. durum) cultivar Svevo is effective against Pst races in China and Israel, and the gene has been previously mapped to the long arm of chromosome 1B. The gene is flanked by SNP (single nucleotide polymorphism) markers IWB5732 and IWB4839 (0.75 cM). In the present study, we used high-density 660K SNP array genotyping and the phenotypes of 137 recombinant inbred lines (RILs) to fine map the QYrsv.swust-1BL locus within a 1.066 Mb region in durum wheat Svevo (RefSeq Rel. 1.0) on chromosome arm 1BL. The identified 1.066 Mb region overlaps with a previously described map of Yr29/QYr.ucw-1BL, a stripe rust APR gene. Twenty-five candidate genes for QYrsv.swut-1BL were identified through comparing polymorphic genes within the 1.066 Mb region in the resistant cultivar. SNP markers were selected and converted to Kompetitive allele-specific polymerase chain reaction (KASP) markers. Five KASP markers based on SNP were validated in a F2 and F2:3 breeding population, providing further compelling evidence for the significant effects of QYrsv.swut-1BL. These markers should be useful in marker-assisted selection for incorporating Yr29/QYrsv.swust-1BL into new durum and common wheat cultivars for resistance to stripe rust.
Collapse
Affiliation(s)
- Xinli Zhou
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Guoyun Jia
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Yuqi Luo
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xin Li
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Lin Cai
- College of Tobacco Science of Guizhou University, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Lab of Agro-Bioengineering, Guiyang, China
| | - Xianming Chen
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, and Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi, China
| |
Collapse
|
9
|
Spychała J, Tomkowiak A, Noweiska A, Bobrowska R, Bocianowski J, Sobiech A, Kwiatek MT. Diversity of Expression Patterns of Lr34, Lr67, and Candidate Genes towards Lr46 with Analysis of Associated miRNAs in Common Wheat Hybrids in Response to Puccinia triticina Fungus. Curr Issues Mol Biol 2024; 46:5511-5529. [PMID: 38921001 PMCID: PMC11201949 DOI: 10.3390/cimb46060329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Leaf rust caused by Puccinia triticina (Pt) is one of the most dangerous diseases causing significant losses in common wheat crops. In adult plants resistant to rust, a horizontal adult plant resistance (APR) type is observed, which protects the plant against multiple pathogen races and is distinguished by greater persistence under production conditions. Crucial pleiotropic slow-rust genes such as Lr34, Lr46, Lr67, and Lr68, in combination with other genes of lesser influence, continue to increase durable resistance to rust diseases. Based on our previous results, we selected four candidate genes for Lr46 out of ten candidates and analysed them for expression before and after inoculation by P. triticina. As part of our study, we also investigated the expression patterns of miRNA molecules complementary to Lr34 and the candidate genes. The aim of the study was to analyse the expression profiles of candidate genes for the Lr46 gene and the Lr34 and Lr67 genes responsible for the differential leaf-rust resistance of hybrid forms of the F1 generation resulting from crosses between the Glenlea cultivar and cultivars from Polish breeding companies. In addition, the expression of five miRNAs (tae-miR9653b, tae-miR5384-3p, tae-miR9780, tae-miR9775 and tae-miR164), complementary to Lr34, and selected candidate genes were analysed using stem-loop RT-PCR and ddPCR. Biotic stress was induced in adult plants by inoculation with Pt fungal spores, under controlled conditions. Plant material was collected before and 6, 12, 24, and 48 h after inoculation (hpi). Differences in expression patterns of Lr34, Lr67, and candidate genes (for Lr46) were analysed by qRT-PCR and showed that gene expression changed at the analysed time points. Identification of molecular markers coupled to the Lr genes studied was also carried out to confirm the presence of these genes in wheat hybrids. qRT-PCR was used to examine the expression levels of the resistance genes. The highest expression of Lr46/Yr29 genes (Lr46-Glu2, Lr46-RLK1, Lr46-RLK2, and Lr46-RLK3) occurred at 12 and 24 hpi, and such expression profiles were obtained for only one candidate gene among the four genes analysed (Lr46-Glu2), indicating that it may be involved in resistance mechanisms of response to Pt infection.
Collapse
Affiliation(s)
- Julia Spychała
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (J.S.); (A.N.); (R.B.); (A.S.); (M.T.K.)
| | - Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (J.S.); (A.N.); (R.B.); (A.S.); (M.T.K.)
| | - Aleksandra Noweiska
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (J.S.); (A.N.); (R.B.); (A.S.); (M.T.K.)
| | - Roksana Bobrowska
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (J.S.); (A.N.); (R.B.); (A.S.); (M.T.K.)
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 60-637 Poznań, Poland
| | - Aleksandra Sobiech
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (J.S.); (A.N.); (R.B.); (A.S.); (M.T.K.)
| | - Michał Tomasz Kwiatek
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (J.S.); (A.N.); (R.B.); (A.S.); (M.T.K.)
- Plant Breeding and Acclimatization Institute—National Research Institute in Radzików, 05-870 Błonie, Poland
| |
Collapse
|
10
|
Li Y, Hu J, Lin H, Qiu D, Qu Y, Du J, Hou L, Ma L, Wu Q, Liu Z, Zhou Y, Li H. Mapping QTLs for adult-plant resistance to powdery mildew and stripe rust using a recombinant inbred line population derived from cross Qingxinmai × 041133. FRONTIERS IN PLANT SCIENCE 2024; 15:1397274. [PMID: 38779062 PMCID: PMC11109386 DOI: 10.3389/fpls.2024.1397274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
A recombinant inbred line (RIL) population derived from wheat landrace Qingxinmai and breeding line 041133 exhibited segregation in resistance to powdery mildew and stripe rust in five and three field tests, respectively. A 16K genotyping by target sequencing (GBTS) single-nucleotide polymorphism (SNP) array-based genetic linkage map was used to dissect the quantitative trait loci (QTLs) for disease resistance. Four and seven QTLs were identified for adult-plant resistance (APR) against powdery mildew and stripe rust. QPm.caas-1B and QPm.caas-5A on chromosomes 1B and 5A were responsible for the APR against powdery mildew in line 041133. QYr.caas-1B, QYr.caas-3B, QYr.caas-4B, QYr.caas-6B.1, QYr.caas-6B.2, and QYr.caas-7B detected on the five B-genome chromosomes of line 041133 conferred its APR to stripe rust. QPm.caas-1B and QYr.caas.1B were co-localized with the pleiotropic locus Lr46/Yr29/Sr58/Pm39/Ltn2. A Kompetitive Allele Specific Polymorphic (KASP) marker KASP_1B_668028290 was developed to trace QPm/Yr.caas.1B. Four lines pyramiding six major disease resistance loci, PmQ, Yr041133, QPm/Yr.caas-1B, QPm.caas-2B.1, QYr.caas-3B, and QPm.caas-6B, were developed. They displayed effective resistance against both powdery mildew and stripe rust at the seedling and adult-plant stages.
Collapse
Affiliation(s)
- Yahui Li
- College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Jinghuang Hu
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huailong Lin
- Jiushenghe Seed Industry Co. Ltd., Changji, China
| | - Dan Qiu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yunfeng Qu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jiuyuan Du
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Lu Hou
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University/Key Laboratory of Agricultural Integrated Pest Management, Xining, China
| | - Lin Ma
- Datong Hui and Tu Autonomous County Agricultural Technology Extension Center, Xining, China
| | - Qiuhong Wu
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| | - Zhiyong Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yijun Zhou
- College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Hongjie Li
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| |
Collapse
|
11
|
Qiao L, Gao X, Jia Z, Liu X, Wang H, Kong Y, Qin P, Yang B. Identification of adult resistant genes to stripe rust in wheat from southwestern China based on GWAS and WGCNA analysis. PLANT CELL REPORTS 2024; 43:67. [PMID: 38341832 DOI: 10.1007/s00299-024-03148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 02/13/2024]
Abstract
KEY MESSAGE In this study, genome-wide association studies combined with transcriptome data analysis were utilized to reveal potential candidate genes for stripe rust resistance in wheat, providing a basis for screening wheat varieties for stripe rust resistance. Wheat stripe rust, which is caused by the wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, Pst) is one of the world's most devastating diseases of wheat. Genetic resistance is the most effective strategy for controlling diseases. Although wheat stripe rust resistance genes have been identified to date, only a few of them confer strong and broad-spectrum resistance. Here, the resistance of 335 wheat germplasm resources (mainly wheat landraces) from southwestern China to wheat stripe rust was evaluated at the adult stage. Combined genome-wide association study (GWAS) and weighted gene co-expression network analysis (WGCNA) based on RNA sequencing from stripe rust resistant accession Y0337 and susceptible accession Y0402, five candidate resistance genes to wheat stripe rust (TraesCS1B02G170200, TraesCS2D02G181000, TraesCS4B02G117200, TraesCS6A02G189300, and TraesCS3A02G122300) were identified. The transcription level analyses showed that these five genes were significantly differentially expressed between resistant and susceptible accessions post inoculation with Pst at different times. These candidate genes could be experimentally transformed to validate and manipulate fungal resistance, which is beneficial for the development of the wheat cultivars resistant to stripe rust.
Collapse
Affiliation(s)
- Liang Qiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xue Gao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhiqiang Jia
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xingchen Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huiyutang Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yixi Kong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Baoju Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
12
|
Wang W, Jin P, Zhang J, Tang Y, Zhao B, Yue W, Cheng P, Li Q, Wang B. Favorable Loci Identified for Stripe Rust Resistance in Chinese Winter Wheat Accessions via Genome-Wide Association Study. PLANT DISEASE 2024; 108:71-81. [PMID: 37467133 DOI: 10.1094/pdis-12-22-2842-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Stripe rust (or yellow rust), caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat worldwide. Currently, the utilization of resistant cultivars is the most viable way to reduce yield losses. In this study, a panel of 188 wheat accessions from China was evaluated for stripe rust resistance, and genome-wide association studies were performed using high-quality Diversity Arrays Technology markers. According to the phenotype and genotype data, a total of 26 significant marker-trait associations were identified, representing 18 quantitative trait loci (QTLs) on chromosomes 1B, 2A, 2B, 3A, 3B, 5A, 5B, 6B, 7B, and 7D. Of the 18 QTLs, almost all were associated with adult plant resistance (APR) except QYr.nwsuaf-6B.2, which was associated with all-stage resistance (also known as seedling resistance). Three of the 18 QTLs were mapped far from previously identified Pst resistance genes and QTLs and were considered potentially new loci. The other 15 QTLs were mapped close to known resistance genes and QTLs. Subsequent haplotype analysis for QYr.nwsuaf-2A and QYr.nwsuaf-7B.3 revealed the degrees of resistance of the panel in the APR stage. In summary, the favorable alleles identified in this study may be useful in breeding for disease resistance to stripe rust.
Collapse
Affiliation(s)
- Wenli Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengfei Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Chinese Jujube, School of Life Science, Yan'an University, Shaanxi 716000, China
| | - Jia Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaqi Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bingjie Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiyun Yue
- Tianshui Institute of Agricultural Science, Tianshui 741000, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baotong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
13
|
Wang B, Meng T, Xiao B, Yu T, Yue T, Jin Y, Ma P. Fighting wheat powdery mildew: from genes to fields. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:196. [PMID: 37606731 DOI: 10.1007/s00122-023-04445-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
KEY MESSAGE Host resistance conferred by Pm genes provides an effective strategy to control powdery mildew. The study of Pm genes helps modern breeding develop toward more intelligent and customized. Powdery mildew of wheat is one of the most destructive diseases seriously threatening the crop yield and quality worldwide. The genetic research on powdery mildew (Pm) resistance has entered a new era. Many Pm genes from wheat and its wild and domesticated relatives have been mined and cloned. Meanwhile, modern breeding strategies based on high-throughput sequencing and genome editing are emerging and developing toward more intelligent and customized. This review highlights mining and cloning of Pm genes, molecular mechanism studies on the resistance and avirulence genes, and prospects for genomic-assisted breeding for powdery mildew resistance in wheat.
Collapse
Affiliation(s)
- Bo Wang
- Yantai Key Laboratory of Characteristic Agricultural Biological Resource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ting Meng
- Yantai Key Laboratory of Characteristic Agricultural Biological Resource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Bei Xiao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Tianying Yu
- Yantai Key Laboratory of Characteristic Agricultural Biological Resource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Tingyan Yue
- Yantai Key Laboratory of Characteristic Agricultural Biological Resource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Biological Resource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Biological Resource Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China.
| |
Collapse
|
14
|
Liu S, Liu D, Zhang C, Zhang W, Wang X, Mi Z, Gao X, Ren Y, Lan C, Liu X, Zhao Z, Liu J, Li H, Yuan F, Su B, Kang Z, Li C, Han D, Wang C, Cao X, Wu J. Slow stripe rusting in Chinese wheat Jimai 44 conferred by Yr29 in combination with a major QTL on chromosome arm 6AL. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:175. [PMID: 37498321 DOI: 10.1007/s00122-023-04420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
YrJ44, a more effective slow rusting gene than Yr29, was localized to a 3.5-cM interval between AQP markers AX-109373479 and AX-109563479 on chromosome 6AL. "Slow rusting" (SR) is a type of adult plant resistance (APR) that can provide non-specific durable resistance to stripe rust in wheat. Chinese elite wheat cultivar Jimai 44 (JM44) has maintained SR to stripe rust in China since its release despite exposure to a changing and variable pathogen population. An F2:6 population comprising 295 recombinant inbred lines (RILs) derived from a cross between JM44 and susceptible cultivar Jimai 229 (JM229) was used in genetic analysis of the SR. The RILs and parental lines were evaluated for stripe rust response in five field environments and genotyped using the Affymetrix Wheat55K SNP array and 13 allele-specific quantitative PCR-based (AQP) markers. Two stable QTL on chromosome arms 1BL and 6AL were identified by inclusive composite interval mapping. The 1BL QTL was probably the pleiotropic gene Lr46/Yr29/Sr58. QYr.nwafu-6AL (hereafter named YrJ44), mapped in a 3.5-cM interval between AQP markers AX-109373479 and AX-109563479, was more effective than Yr29 in reducing disease severity and relative area under the disease progress curve (rAUDPC). RILs harboring both YrJ44 and Yr29 displayed levels of SR equal to the resistant parent JM44. The AQP markers linked with YrJ44 were polymorphic and significantly correlated with stripe rust resistance in a panel of 1,019 wheat cultivars and breeding lines. These results suggested that adequate SR resistance can be obtained by combining YrJ44 and Yr29 and the AQP markers can be used in breeding for durable stripe rust resistance.
Collapse
Affiliation(s)
- Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Dan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chuanliang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wenjing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zhiwen Mi
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Laboratory of Agricultural Information Perception and Intelligent Services, College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xin Gao
- Crop Research Institute, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture /Shandong Provincial Technology Innovation Center for Wheat, Shandong Academy of Agricultural Sciences / National Engineering Research Center for Wheat and Maize, Jinan, 250100, China
| | - Yong Ren
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang Institute of Agricultural Science, Mianyang, 621023, Sichuan, China
| | - Caixia Lan
- College of Plant Science and Technology, Huazhong Agricultural University/Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiukun Liu
- Crop Research Institute, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture /Shandong Provincial Technology Innovation Center for Wheat, Shandong Academy of Agricultural Sciences / National Engineering Research Center for Wheat and Maize, Jinan, 250100, China
| | - Zhendong Zhao
- Crop Research Institute, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture /Shandong Provincial Technology Innovation Center for Wheat, Shandong Academy of Agricultural Sciences / National Engineering Research Center for Wheat and Maize, Jinan, 250100, China
| | - Jianjun Liu
- Crop Research Institute, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture /Shandong Provincial Technology Innovation Center for Wheat, Shandong Academy of Agricultural Sciences / National Engineering Research Center for Wheat and Maize, Jinan, 250100, China
| | - Haosheng Li
- Crop Research Institute, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture /Shandong Provincial Technology Innovation Center for Wheat, Shandong Academy of Agricultural Sciences / National Engineering Research Center for Wheat and Maize, Jinan, 250100, China
| | - Fengping Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Baofeng Su
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Laboratory of Agricultural Information Perception and Intelligent Services, College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chunlian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Changfa Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Xinyou Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
- Crop Research Institute, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture /Shandong Provincial Technology Innovation Center for Wheat, Shandong Academy of Agricultural Sciences / National Engineering Research Center for Wheat and Maize, Jinan, 250100, China.
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
15
|
Pang Y, Liu C, Lin M, Ni F, Li W, Cai J, Zhang Z, Zhu H, Liu J, Wu J, Bai G, Liu S. Mapping QTL for Adult-Plant Resistance to Stripe Rust in a Chinese Wheat Landrace. Int J Mol Sci 2022; 23:ijms23179662. [PMID: 36077059 PMCID: PMC9456275 DOI: 10.3390/ijms23179662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Wheat stripe (yellow) rust is a worldwide disease that seriously reduces wheat grain yield and quality. Adult-plant resistance (APR) to stripe rust is generally more durable but usually controlled by multiple genes with partial resistance. In this study, a recombinant inbred line population was developed from a cross between a Chinese wheat landrace, Tutoumai, with APR to stripe rust, and a highly susceptible wheat cultivar, Siyang 936. The population was genotyped by genotyping-by-sequencing and phenotyped for APR to stripe rust in four consecutive field experiments. Three QTLs, QYr.sdau-1BL, QYr.sdau-5BL, and QYr.sdau-6BL, were identified for APR to stripe rust, and explained 8.0–21.2%, 10.1–22.7%, and 11.6–18.0% of the phenotypic variation, respectively. QYr.sdau-1BL was further mapped to a 21.6 Mb region using KASP markers derived from SNPs identified by RNA-seq of the two parents. In the QYr.sdau-1BL region, 13 disease-resistance-related genes were differently expressed between the two parents, and therefore were considered as the putative candidates of QYr.sdau-1BL. This study provides favorable gene/QTL and high-throughput markers to breeding programs for marker-assisted selection of the wheat stripe rust APR genes.
Collapse
Affiliation(s)
- Yunlong Pang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Chunxia Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Meng Lin
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| | - Fei Ni
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Wenhui Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Jin Cai
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ziliang Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Huaqiang Zhu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Jingxian Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
- Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, USA
| | - Shubing Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
- Correspondence:
| |
Collapse
|
16
|
Huang S, Zhang Y, Ren H, Li X, Zhang X, Zhang Z, Zhang C, Liu S, Wang X, Zeng Q, Wang Q, Singh RP, Bhavani S, Wu J, Han D, Kang Z. Epistatic interaction effect between chromosome 1BL (Yr29) and a novel locus on 2AL facilitating resistance to stripe rust in Chinese wheat Changwu 357-9. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2501-2513. [PMID: 35723707 DOI: 10.1007/s00122-022-04133-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Four stable QTL for adult plant resistance were identified in wheat line Changwu 357-9, including a new QTL on 2AL showing significant interaction with Yr29 to reduce stripe rust severity. Stripe rust (yellow rust) is a serious disease of bread wheat (Triticum aestivum L.) worldwide. Genetic resistance is considered the most economical, effective and environmentally friendly method to control the disease and to minimize the use of fungicides. The current study focused on characterizing the components of stripe rust resistance and understanding the interactions in Changwu 357-9 (CW357-9)/Avocet S RIL population. A genetic linkage map constructed using a new GenoBaits Wheat 16K Panel and the 660K SNP array had 5104 polymorphic SNP markers spanning 3533.11 cM. Four stable QTL, consistently identified across five environments, were detected on chromosome arms 1BL, 2AL, 3DS, and 6BS in Changwu357-9. The most effective QTL QYrCW357-1BL was Yr29. The 6BS QTL was identified as Yr78, which has been combined with the 1BL QTL in many wheat cultivars and breeding lines. The novel QTL on 2AL with moderate effect showed a stable and significant epistatic interaction with Yr29. The QTL on 3DL should be same as QYrsn.nwafu-3DL and enriches the overall stripe rust resistance gene pool for breeding. Polymorphisms of flanking AQP markers AX-110020417 (for QYrCW357-1BL), AX-110974948 (for QYrCW357-2AL), AX-109466386 (for QYrCW357-3DL), and AX-109995005 (for QYrCW357-6BS) were evaluated in a diversity panel including 225 wheat cultivars and breeding lines. These results suggested that these high-throughput markers could be used to introduce QYrCW357-1BL, QYrCW357-2AL, QYrCW357-3DL, and QYrCW357-6BS into commercial wheat cultivars. Combinations of these genes with other APR QTL should lead to higher levels of stripe rust resistance along with the beneficial effects of multi-disease resistance gene Yr29 on improving resistance to other diseases.
Collapse
Affiliation(s)
- Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yibo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Hui Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zeyuan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chuanliang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), 56237, El Batan, Texcoco, Estado de Mexico, Mexico
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), 56237, El Batan, Texcoco, Estado de Mexico, Mexico
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
17
|
Mago R, Chen C, Xia X, Whan A, Forrest K, Basnet BR, Perera G, Chandramohan S, Randhawa M, Hayden M, Bansal U, Huerta-Espino J, Singh RP, Bariana H, Lagudah E. Adult plant stem rust resistance in durum wheat Glossy Huguenot: mapping, marker development and validation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1541-1550. [PMID: 35199199 DOI: 10.1007/s00122-022-04052-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/28/2022] [Indexed: 05/12/2023]
Abstract
Adult plant stem rust resistance locus, QSrGH.cs-2AL, was identified in durum wheat Glossy Huguenot and mendelised as Sr63. Markers closely linked with Sr63 were developed. An F3 population from a Glossy Huguenot (GH)/Bansi cross used in a previous Australian study was advanced to F6 for molecular mapping of adult plant stem rust resistance. Maturity differences among F6 lines confounded assessments of stem rust response. GH was crossed with a stem rust susceptible F6 recombinant inbred line (RIL), GHB14 (M14), with similar maturity and an F6:7 population was developed through single seed descent method. F7 and F8 RILs were tested along with the parents at different locations. The F6 individual plants and both parents were genotyped using the 90 K single nucleotide polymorphism (SNP) wheat array. Stem rust resistance QTL on the long arms of chromosomes 1B (QSrGH.cs-1BL) and 2A (QSrGH.cs-2AL) were detected. QSrGH.cs-1BL and QSrGH.cs-2AL were both contributed by GH and explained 22% and 18% adult plant stem rust response variation, respectively, among GH/M14 RIL population. RILs carrying combinations of these QTL reduced more than 14% stem rust severity compared to those that possessed QSrGH.cs-1BL and QSrGH.cs-2AL individually. QSrGH.cs1BL was demonstrated to be the same as Sr58/Lr46/Yr29/Pm39 through marker genotyping. Lines lacking QSrGH.cs-1BL were used to Mendelise QSrGH.cs-2AL. Based on genomic locations of previously catalogued stem rust resistance genes and the QSrGH.cs-2AL map, it appeared to represent a new APR locus and was permanently named Sr63. SNP markers associated with Sr63 were converted to kompetetive allele-specific PCR (KASP) assays and were validated on a set of durum cultivars.
Collapse
Affiliation(s)
- Rohit Mago
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia.
| | - Chunhong Chen
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia
| | - Xiaodi Xia
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia
| | - Alex Whan
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia
| | - Kerrie Forrest
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Agribio, 5 Ring Rd, Bundoora, VIC, 3083, Australia
| | - Bhoja R Basnet
- CIMMYT, Carretera Mexico-Veracruz Km 18, El Batan, Texcoco, Estado de México, Mexico
| | - Geetha Perera
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia
| | - Sutha Chandramohan
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia
| | - Mandeep Randhawa
- ICRAF House, CIMMYT Kenya, United Nations Avenue, Gigiri, Village Market, P.O. Box 1041, 00621, Nairobi, Kenya
| | - Matthew Hayden
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Agribio, 5 Ring Rd, Bundoora, VIC, 3083, Australia
| | - Urmil Bansal
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| | - Julio Huerta-Espino
- Campo Experimental Valle de México, INIFAP, Chapingo, Estado de México, Mexico
| | - Ravi P Singh
- CIMMYT, Carretera Mexico-Veracruz Km 18, El Batan, Texcoco, Estado de México, Mexico
| | - Harbans Bariana
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia.
| | - Evans Lagudah
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia.
| |
Collapse
|
18
|
Burridge AJ, Winfield MO, Wilkinson PA, Przewieslik-Allen AM, Edwards KJ, Barker GLA. The Use and Limitations of Exome Capture to Detect Novel Variation in the Hexaploid Wheat Genome. FRONTIERS IN PLANT SCIENCE 2022; 13:841855. [PMID: 35498663 PMCID: PMC9039655 DOI: 10.3389/fpls.2022.841855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The bread wheat (Triticum aestivum) pangenome is a patchwork of variable regions, including translocations and introgressions from progenitors and wild relatives. Although a large number of these have been documented, it is likely that many more remain unknown. To map these variable regions and make them more traceable in breeding programs, wheat accessions need to be genotyped or sequenced. The wheat genome is large and complex and consequently, sequencing efforts are often targeted through exome capture. In this study, we employed exome capture prior to sequencing 12 wheat varieties; 10 elite T. aestivum cultivars and two T. aestivum landrace accessions. Sequence coverage across chromosomes was greater toward distal regions of chromosome arms and lower in centromeric regions, reflecting the capture probe distribution which itself is determined by the known telomere to centromere gene gradient. Superimposed on this general pattern, numerous drops in sequence coverage were observed. Several of these corresponded with reported introgressions. Other drops in coverage could not be readily explained and may point to introgressions that have not, to date, been documented.
Collapse
Affiliation(s)
| | - Mark O. Winfield
- School of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Paul A. Wilkinson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | | | - Keith J. Edwards
- School of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Gary L. A. Barker
- School of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
19
|
Wang Y, Hu Y, Gong F, Jin Y, Xia Y, He Y, Jiang Y, Zhou Q, He J, Feng L, Chen G, Zheng Y, Liu D, Huang L, Wu B. Identification and Mapping of QTL for Stripe Rust Resistance in the Chinese Wheat Cultivar Shumai126. PLANT DISEASE 2022; 106:1278-1285. [PMID: 34818916 DOI: 10.1094/pdis-09-21-1946-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a damaging disease of wheat globally, and breeding resistant cultivars is the best control strategy. The Chinese winter wheat cultivar Shumai126 (SM126) exhibited strong resistance to P. striiformis f. sp. tritici in the field for more than 10 years. The objective of this study was to identify and map quantitative trait loci (QTL) for resistance to stripe rust in a population of 154 recombinant inbred lines (RILs) derived from a cross between cultivars Taichang29 (TC29) and SM126. The RILs were tested in six field environments with a mixture of the Chinese prevalent races (CYR32, CYR33, CYR34, Zhong4, and HY46) of P. striiformis f. sp. tritici and in growth chamber with race CYR34 and genotyped using the Wheat55K single nucleotide polymorphism (SNP) array. Six QTL were mapped on chromosomes 1BL, 2AS, 2AL, 6AS, 6BS, and 7BL, respectively. All QTL were contributed by SM126 except QYr.sicau-2AL. The QYr.sicau-1BL and QYr.sicau-2AS had major effects, explaining 27.00 to 39.91% and 11.89 to 17.11% of phenotypic variances, which may correspond to known resistance genes Yr29 and Yr69, respectively. The QYr.sicau-2AL, QYr.sicau-6AS, and QYr.sicau-6BS with minor effects are likely novel. QYr.sicau-7BL was only detected based on growth chamber seedling data. Additive effects were detected for the combination of QYr.sicau-1BL, QYr.sicau-2AS, and QYr.sicau-2AL. SNP markers linked to QYr.sicau-1BL (AX-111056129 and AX-108839316) and QYr.sicau-2AS (AX-111557864 and AX-110433540) were converted to breeder-friendly Kompetitive allele-specific PCR (KASP) markers that would facilitate the deployment of stripe rust resistance genes in wheat breeding.
Collapse
Affiliation(s)
- Yufan Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yanling Hu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Fangyi Gong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yarong Jin
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yingjie Xia
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yu He
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yun Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Jingshu He
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lihua Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bihua Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
20
|
Bobrowska R, Noweiska A, Spychała J, Tomkowiak A, Nawracała J, Kwiatek MT. Diagnostic accuracy of genetic markers for identification of the Lr46/Yr29 “slow rusting” locus in wheat ( Triticum aestivum L.). Biomol Concepts 2022; 13:1-9. [DOI: 10.1515/bmc-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/03/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Wheat leaf rust, caused by fungal pathogen Puccinia triticina Erikss, annually contributes to production losses as high as 40% in susceptible varieties and remains as one of the most damaging diseases of wheat worldwide. Currently, one of the major challenges of wheat geneticists and breeders is to accumulate major genes for durability of rust resistance called “slow rusting” genes using marker-assisted selection (MAS). Until now, eight genes (Lr34/Yr18, Lr46/Yr29, Lr67/Yr46, Lr68, Lr74, Lr75, Lr77, and Lr78) conferring resistance against multiple fungal pathogens have been identified in wheat gene pool and the molecular markers were developed for them. In MAS practice, it is a common problem that cultivars exhibiting desirable marker genotypes may not necessarily have the targeted genes or alleles and vice versa, which is known as “false positives.” The aim of this study was to compare the available four markers: Xwmc44, Xgwm259, Xbarc80, and csLV46G22 markers (not published yet), for the identification of the Lr46/Yr29 loci in 73 genotypes of wheat, which were reported as sources of various “slow rusting” genes, including 60 with confirmed Lr46/Yr29 gene, reported in the literature. This research revealed that csLV46G22 together with Xwmc44 is most suitable for the identification of resistance allele of the Lr46/Yr29 gene; however, there is a need to clone the Lr46/Yr29 loci to identify and verify the allelic variation of the gene and the function.
Collapse
Affiliation(s)
- Roksana Bobrowska
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences , 11 Dojazd Str , 60-632 Poznań , Poland
| | - Aleksandra Noweiska
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences , 11 Dojazd Str , 60-632 Poznań , Poland
| | - Julia Spychała
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences , 11 Dojazd Str , 60-632 Poznań , Poland
| | - Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences , 11 Dojazd Str , 60-632 Poznań , Poland
| | - Jerzy Nawracała
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences , 11 Dojazd Str , 60-632 Poznań , Poland
| | - Michał T. Kwiatek
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences , 11 Dojazd Str , 60-632 Poznań , Poland
| |
Collapse
|
21
|
Zhou J, Singh RP, Ren Y, Bai B, Li Z, Yuan C, Li S, Huerta-Espino J, Liu D, Lan C. Identification of Two New Loci for Adult Plant Resistance to Leaf Rust and Stripe Rust in the Chinese Wheat Variety 'Neimai 836'. PLANT DISEASE 2021; 105:3705-3714. [PMID: 33779256 DOI: 10.1094/pdis-12-20-2654-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The characterization of leaf rust (caused by Puccinia triticina) and stripe rust (caused by Puccinia striiformis f. sp. tritici) resistance genes is the basis for breeding resistant wheat varieties and managing epidemics of these diseases in wheat. A cross between the susceptible wheat variety 'Apav#1' and resistant variety 'Neimai 836' was used to develop a mapping population containing 148 F5 recombinant inbred lines (RILs). Leaf rust phenotyping was done in field trials at Ciudad Obregón, Mexico, in 2017 and 2018, and stripe rust data were generated at Toluca, Mexico, in 2017 and in Mianyang, Ezhou, and Gansu, China, in 2019. Inclusive complete interval mapping (ICIM) was used to create a genetic map and identify significant resistance quantitative trait loci (QTL) with 2,350 polymorphic markers from a 15K wheat single-nucleotide polymorphism (SNP) array and simple-sequence repeats (SSRs). The pleiotropic multipathogen resistance gene Lr46/Yr29 and four QTL were identified, including two new loci, QLr.hzau-3BL and QYr.hzau-5AL, which explained 3 to 16% of the phenotypic variation in resistance to leaf rust and 7 to 14% of that to stripe rust. The flanking SNP markers for the two loci were converted to Kompetitive Allele-Specific PCR (KASP) markers and used to genotype a collection of 153 wheat lines, indicating the Chinese origin of the loci. Our results suggest that Neimai 836, which has been used as a parent for many wheat varieties in China, could be a useful source of high-level resistance to both leaf rust and stripe rust.
Collapse
Affiliation(s)
- Jingwei Zhou
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), 06600 Mexico D.F., Mexico
| | - Yong Ren
- Mianyang Academy of Agricultural Science/Mianyang Branch of National Wheat Improvement Center, Mianyang 621023, Sichuan, P.R. China
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, No. 1 Nongkeyuanxincun, Lanzhou 730070, Gansu Province, P.R. China
| | - Zhikang Li
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Chan Yuan
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Shunda Li
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Julio Huerta-Espino
- Campo Experimental Valle de Mexico Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias (INIFAP), 56230 Chapingo, Edo. de Mexico, Mexico
| | - Demei Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Crop Molecular Breeding and China and Qinghai Provincial Key Laboratory of Crop Molecular Breeding Northwest Institute of Plateau Biology, Innovation Academy for Seed Design, Xining 810008, P.R. China
| | - Caixia Lan
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| |
Collapse
|
22
|
Liu S, Huang S, Zeng Q, Wang X, Yu R, Wang Q, Singh RP, Bhavani S, Kang Z, Wu J, Han D. Refined mapping of stripe rust resistance gene YrP10090 within a desirable haplotype for wheat improvement on chromosome 6A. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2005-2021. [PMID: 33683400 DOI: 10.1007/s00122-021-03801-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
A large genomic region spanning over 300 Mb on chromosome 6A under intense artificial selection harbors multiple loci associated with favorable traits including stripe rust resistance in wheat. The development of resistance cultivars can be an optimal strategy for controlling wheat stripe rust disease. Although loci for stripe rust resistance have been identified on chromosome 6A in previous studies, it is unclear whether these loci span a common genetic interval, and few studies have attempted to analyze the haplotype changes that have accompanied wheat improvement over the period of modern breeding. In this study, we used F2:3 families and F6:7 recombinant inbred lines (RILs) derived from a cross between a resistant CIMMYT wheat accession P10090 and the susceptible landrace Mingxian 169 to improve the resolution of the QTL on chromosome 6A. The co-located QTL, designated as YrP10090, was flanked by SNP markers AX-94460938 and AX-110585473 with a genetic interval of 3.5 cM, however, corresponding to a large physical distance of over 300 Mb in RefSeq v.1.0 (positions 107.1-446.5 Mb). More than 1,300 SNP markers in this genetic region were extracted for haplotype analysis in a panel of 1,461 worldwide common wheat accessions, and three major haplotypes (Hap1, Hap2, and Hap3) were identified. The favorable haplotype Hap1 associated with stripe rust resistance exhibited a large degree of linkage disequilibrium. Selective sweep analyses were performed between different haplotype groups, revealing specific genomic regions with strong artificial selection signals. These regions harbored multiple desirable traits associated with resilience to environmental stress, different yield components, and quality characteristics. P10090 and its derivatives that carry the desirable haplotype can provide a concrete foundation for bread wheat improvement including the genomic selection.
Collapse
Affiliation(s)
- Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Rui Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, 56237, Texcoco, Estado de Mexico, Mexico
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, 56237, Texcoco, Estado de Mexico, Mexico
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
23
|
Kanwal M, Qureshi N, Gessese M, Forrest K, Babu P, Bariana H, Bansal U. An adult plant stripe rust resistance gene maps on chromosome 7A of Australian wheat cultivar Axe. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2213-2220. [PMID: 33839800 DOI: 10.1007/s00122-021-03818-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
An adult plant stripe rust resistance gene Yr75 was located on the long arm of chromosome 7A. Fine mapping of the region identified markers closely linked with Yr75. Australian wheat cultivar Axe produced resistant to moderately resistant stripe rust responses under field conditions and was exhibiting seedling responses varying from 33C to 3+ under greenhouse conditions. Experiments covering tests at different growth stages (2nd, 3rd and 4th leaf stages) demonstrated the clear expression of resistance at the 4th leaf stage under controlled-environment greenhouse conditions. A recombinant inbred line (RIL) population was developed from the Axe/Nyabing-3 (Nyb) cross. Genetic analysis of Axe/Nyb RIL population in the greenhouse at the 4th leaf stage showed monogenic inheritance of stripe rust resistance. Selective genotyping using the iSelect 90 K Infinium SNP genotyping array was performed, and the resistance locus was mapped to the long arm of chromosome 7A and named Yr75. The Axe/Nyb RIL population was genotyped using a targeted genotype-by-sequencing assay, and the resistance-linked SNPs were converted into kompetitive allele-specific PCR (KASP) markers. These markers were tested on the entire Axe/Nyb RIL population, and markers sunKASP_430 and sunKASP_427 showed close association with Yr75 in the Axe/Nyb RIL population. A high-resolution mapping family of 1032 F2 plants from the Axe/Nyb cross was developed and genotyped with sunKASP_430 and sunKASP_427, and these markers flanked Yr75 at 0.3 cM and 0.4 cM, respectively. These markers cover 1.24 Mb of the physical map of Chinese Spring, and this information will be useful for map-based cloning of Yr75.
Collapse
Affiliation(s)
- Mehwish Kanwal
- School of Life Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| | - Naeela Qureshi
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Rd, Bundoora, VIC, 3083, Australia
| | - Mesfin Gessese
- School of Life Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| | - Kerrie Forrest
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Rd, Bundoora, VIC, 3083, Australia
| | - Prashanth Babu
- School of Life Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| | - Harbans Bariana
- School of Life Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia.
| | - Urmil Bansal
- School of Life Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia.
| |
Collapse
|
24
|
Zhou X, Zhong X, Roter J, Li X, Yao Q, Yan J, Yang S, Guo Q, Distelfeld A, Sela H, Kang Z. Genome-Wide Mapping of Loci for Adult-Plant Resistance to Stripe Rust in Durum Wheat Svevo Using the 90K SNP Array. PLANT DISEASE 2021; 105:879-888. [PMID: 33141640 DOI: 10.1094/pdis-09-20-1933-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Stripe rust is a foliar disease in wheat caused by Puccinia striiformis f. tritici. The best way to protect wheat from this disease is by growing resistant cultivars. Tetraploid wheat can serve as a good source of valuable genetic diversity for various traits. Here, we report the mapping of nine stripe rust resistance quantitative trait loci (QTL) effective against P. striiformis f. tritici in China and Israel. We used recombinant inbred lines (RILs) developed from a cross between the durum wheat cultivar Svevo and Triticum dicoccoides accession Zavitan. By genotyping the RIL population of 137 lines using the wheat 90K single-nucleotide polymorphism array, we mapped an adult-plant resistance locus QYrsv.swust-1BL.1, the most effective QTL, within a 0.75-centimorgan region in T. turgidum subsp. durum 'Svevo' on chromosome arm 1BL, corresponding to the region of 670.7 to 671.5 Mb on the Chinese Spring chromosome arm 1BL. Of the other eight minor-effect stripe rust QTL, seven were from Svevo and mapped on chromosomes 1A, 1B, 2B, 3A, 4A, and 5A, and one was from Zavitan and mapped on chromosome 2A. Several QTL with epistatic effects were identified as well. The markers linked to the resistance QTL can be useful in marker-assisted selection for incorporation of these resistance QTL into both durum and common wheat cultivars.
Collapse
Affiliation(s)
- Xinli Zhou
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Xiao Zhong
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Jonatan Roter
- The Institute for Cereal Crops Improvement Tel-Aviv University; Institute of Evolution, Department of Evolutionary and Environmental Biology, University of Haifa; Tel Aviv 6139001, Israel
| | - Xin Li
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Qiang Yao
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Province, Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Academy of Agriculture and Forestry Science, Qinghai University, Xining, Qinghai 810016, People's Republic of China
| | - Jiahui Yan
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Province, Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Academy of Agriculture and Forestry Science, Qinghai University, Xining, Qinghai 810016, People's Republic of China
| | - Suizhuang Yang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Qingyun Guo
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Province, Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Academy of Agriculture and Forestry Science, Qinghai University, Xining, Qinghai 810016, People's Republic of China
| | - Assaf Distelfeld
- The Institute for Cereal Crops Improvement Tel-Aviv University; Institute of Evolution, Department of Evolutionary and Environmental Biology, University of Haifa; Tel Aviv 6139001, Israel
| | - Hanan Sela
- The Institute for Cereal Crops Improvement Tel-Aviv University; Institute of Evolution, Department of Evolutionary and Environmental Biology, University of Haifa; Tel Aviv 6139001, Israel
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
25
|
Li H, Bariana H, Singh D, Zhang L, Dillon S, Whan A, Bansal U, Ayliffe M. A durum wheat adult plant stripe rust resistance QTL and its relationship with the bread wheat Yr80 locus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3049-3066. [PMID: 32683473 DOI: 10.1007/s00122-020-03654-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/08/2020] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE A stripe rust resistance QTL in durum wheat maps near the bread wheat Yr80 locus with the latter reduced to 15 candidate genes. Some wheat adult plant resistance (APR) genes provide partial resistance in the later stages of plant development to rust diseases and are an important component in protecting wheat crops from these fungal pathogens. These genes provide protection in both bread wheat and durum wheat. Here, we have mapped APR to wheat stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici, in a cross between durum cultivars Stewart and Bansi. Two resistance QTLs derived from the Stewart parent were identified in multi-generational field trials. One QTL is located on chromosome 1BL and maps to the previously identified Yr29/Lr46/Sr58/Pm39 multi-pathogen APR locus. The second locus, located on chromosome 3BL, maps near the recently described bread wheat APR gene, Yr80. Fine mapping in durum and bread wheat families shows that the durum 3BL locus and Yr80 are closely located, with the later APR gene reduced to 15 candidate genes present in the Chinese Spring genome sequence. Distorted segregation of the durum 3BL region was observed with the Stewart locus preferentially transmitted through pollen when compared with the equivalent Bansi region.
Collapse
Affiliation(s)
- Hongyu Li
- CSIRO Agriculture and Food, Box 1700, Clunies Ross Street, Canberra, ACT, Australia
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Harbans Bariana
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| | - Davinder Singh
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Shannon Dillon
- CSIRO Agriculture and Food, Box 1700, Clunies Ross Street, Canberra, ACT, Australia
| | - Alex Whan
- CSIRO Agriculture and Food, Box 1700, Clunies Ross Street, Canberra, ACT, Australia
| | - Urmil Bansal
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| | - Michael Ayliffe
- CSIRO Agriculture and Food, Box 1700, Clunies Ross Street, Canberra, ACT, Australia.
| |
Collapse
|
26
|
Tomkowiak A, Jędrzejewski T, Spychała J, Kuczyński J, Kwiatek MT, Tyczewska A, Skowrońska R, Twardowski T. Analysis of miRNA expression associated with the Lr46 gene responsible for APR resistance in wheat (Triticum aestivum L.). J Appl Genet 2020; 61:503-511. [PMID: 32812165 PMCID: PMC7652742 DOI: 10.1007/s13353-020-00573-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 11/26/2022]
Abstract
Lr46/Yr29/Pm39 (Lr46) is a gene for slow rusting resistance in wheat. The aim of the study was to analyze the miRNA expression in selected common wheat cultivars carrying resistance genes, Lr46 among others (HN Rod, Pavon‘S’, Myna‘S’, Frontana‘S’, and Sparrow’S’) in response to leaf rust infection caused by Puccinia triticina Erikss. In the Pavon ‘S’, Myna ‘S’, Frontana‘S’, and Sparow‘S’ varieties a product with a length of 242 bp has been identified, which is specific to the Xwmc44 marker linked to the brown rust resistance gene Lr46. In the next step, the differences in the expression of microRNA (miR5085 and miR164) associated with the Lr46 gene, which is responsible for different resistance of selected wheat cultivars to leaf rust, were examined using emulsion PCR (ddPCR). In the experiment, biotic stress was induced in mature plants by infecting them with fungal spores under controlled conditions in a growth chamber. For analysis the plant material was collected before inoculation and 6, 12, 24, and 48 h after inoculation. The experiments also showed that plant infection with Puccinia triticina resulted in an increase in miR164 expression in cultivars carrying the Lr46 gene. The expression of miR164 remained stable in a control cultivar (HN ROD) lacking this gene. This has proved that miR164 can be involved in leaf rust resistance mechanisms.
Collapse
Affiliation(s)
- Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd str. 11, 60-632, Poznań, Poland
| | - Tomasz Jędrzejewski
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd str. 11, 60-632, Poznań, Poland
| | - Julia Spychała
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd str. 11, 60-632, Poznań, Poland
| | - Jakub Kuczyński
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704, Poznań, Poland
| | - Michał T Kwiatek
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd str. 11, 60-632, Poznań, Poland.
| | - Agata Tyczewska
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704, Poznań, Poland
| | - Roksana Skowrońska
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd str. 11, 60-632, Poznań, Poland
| | - Tomasz Twardowski
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704, Poznań, Poland
| |
Collapse
|
27
|
Skowrońska R, Tomkowiak A, Nawracała J, Kwiatek MT. Molecular identification of slow rusting resistance Lr46/Yr29 gene locus in selected triticale (× Triticosecale Wittmack) cultivars. J Appl Genet 2020; 61:359-366. [PMID: 32424640 PMCID: PMC8651608 DOI: 10.1007/s13353-020-00562-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/02/2022]
Abstract
Recently, leaf rust and yellow rust caused by the fungi Puccinia triticina Erikss. and P. striiformis Westend f. sp. tritici Eriks and Henn are diseases of increasing threat in triticale (× Triticosecale Wittmack, AABBRR, 2n = 6x = 42) growing areas. The use of genetic resistance is considered the most economical, effective and environmentally friendly method to control the disease and minimize the use of fungicides. Currently, breeding programs mainly relied on race-specific Lr and Yr genes (R), but new races of the rust fungi frequently defeat resistance. There is a small group of genes that causes partial type of resistance (PR) that are characterized by a slow epidemic build up despite a high infection type. In wheat slow rusting resistance genes displayed longer latent periods, low infection frequencies, smaller pustule size and less spore production. Slow rusting Lr46/Yr29 gene, located on chromosome 1B, is being exploited in many wheat breeding programs. So far, there is no information about slow rusting genes in triticale. This paper showed significant differences between the results of identification of wheat molecular markers Xwmc44 and csLV46G22 associated with Lr46/Yr29 in twenty triticale cultivars, which were characterized by high levels of field resistance to leaf and yellow rust. The csLV46G22res marker has been identified in the following cultivars: Kasyno, Mamut and Puzon. Belcanto and Kasyno showed the highest resistance levels in three-year (2016–2018), leaf and yellow rust severity tests under post-registration variety testing program (PDO). Leaf tip necrosis, a phenotypic trait associated with Lr34/Yr18 and Lr46/Yr29 was observed, among others, to Belcanto and Kasyno, which showed the highest resistance for leaf rust and yellow rust. Kasyno could be considered to have Lr46/Yr29 and can be used as a source of slow rust resistance in breeding and importantly as a component of gene pyramiding in triticale.
Collapse
Affiliation(s)
- Roksana Skowrońska
- Department of Genetics and Plant Breeding, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, 11 Dojazd Str, 60-632, Poznań, Poland
| | - Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, 11 Dojazd Str, 60-632, Poznań, Poland
| | - Jerzy Nawracała
- Department of Genetics and Plant Breeding, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, 11 Dojazd Str, 60-632, Poznań, Poland
| | - Michał T Kwiatek
- Department of Genetics and Plant Breeding, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, 11 Dojazd Str, 60-632, Poznań, Poland.
| |
Collapse
|
28
|
Yang M, Li G, Wan H, Li L, Li J, Yang W, Pu Z, Yang Z, Yang E. Identification of QTLs for Stripe Rust Resistance in a Recombinant Inbred Line Population. Int J Mol Sci 2019; 20:ijms20143410. [PMID: 31336736 PMCID: PMC6678735 DOI: 10.3390/ijms20143410] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/02/2022] Open
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating fungal diseases of wheat worldwide. It is essential to discover more sources of stripe rust resistance genes for wheat breeding programs. Specific locus amplified fragment sequencing (SLAF-seq) is a powerful tool for the construction of high-density genetic maps. In this study, a set of 200 recombinant inbred lines (RILs) derived from a cross between wheat cultivars Chuanmai 42 (CH42) and Chuanmai 55 (CH55) was used to construct a high-density genetic map and to identify quantitative trait loci (QTLs) for stripe rust resistance using SLAF-seq technology. A genetic map of 2828.51 cM, including 21 linkage groups, contained 6732 single nucleotide polymorphism markers (SNP). Resistance QTLs were identified on chromosomes 1B, 2A, and 7B; Qyr.saas-7B was derived from CH42, whereas Qyr.saas-1B and Qyr.saas-2A were from CH55. The physical location of Qyr.saas-1B, which explained 6.24–34.22% of the phenotypic variation, overlapped with the resistance gene Yr29. Qyr.saas-7B accounted for up to 20.64% of the phenotypic variation. Qyr.saas-2A, a minor QTL, was found to be a likely new stripe rust resistance locus. A significant additive effect was observed when all three QTLs were combined. The combined resistance genes could be of value in breeding wheat for stripe rust resistance.
Collapse
Affiliation(s)
- Manyu Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hongshen Wan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Liping Li
- Chengdu Academy of Agricultural and Forestry Sciences, Wenjiang, Chengdu 611130, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Zongjun Pu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| |
Collapse
|