1
|
Te Vrugt M, Wittkowski R. Perspective: New directions in dynamical density functional theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:041501. [PMID: 35917827 DOI: 10.1088/1361-648x/ac8633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Classical dynamical density functional theory (DDFT) has become one of the central modeling approaches in nonequilibrium soft matter physics. Recent years have seen the emergence of novel and interesting fields of application for DDFT. In particular, there has been a remarkable growth in the amount of work related to chemistry. Moreover, DDFT has stimulated research on other theories such as phase field crystal models and power functional theory. In this perspective, we summarize the latest developments in the field of DDFT and discuss a variety of possible directions for future research.
Collapse
Affiliation(s)
- Michael Te Vrugt
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
2
|
Lucco Castello F, Tolias P. Bridge functions of classical one-component plasmas. Phys Rev E 2022; 105:015208. [PMID: 35193199 DOI: 10.1103/physreve.105.015208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In a recent paper, Lucco Castello et al. [arXiv:2107.03537] performed systematic extractions of classical one-component plasma bridge functions from molecular dynamics simulations and provided an accurate parametrization that was incorporated in their isomorph-based empirically modified hypernetted chain approach for Yukawa one-component plasmas. Here the extraction technique and parametrization strategy are described in detail, while the deficiencies of earlier efforts are discussed. The structural and thermodynamic predictions of the updated version of the integral equation theory approach are compared with extensive available simulation results revealing a truly unprecedented level of accuracy in the entire dense liquid region of the Yukawa phase diagram.
Collapse
Affiliation(s)
- F Lucco Castello
- Space and Plasma Physics, Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - P Tolias
- Space and Plasma Physics, Royal Institute of Technology, Stockholm SE-100 44, Sweden
| |
Collapse
|
3
|
Lan YS, Gu YJ, Li ZG, Li GJ, Liu L, Wang ZQ, Chen QF, Chen XR. Transport properties of a quasisymmetric binary nitrogen-oxygen mixture in the warm dense regime. Phys Rev E 2022; 105:015201. [PMID: 35193253 DOI: 10.1103/physreve.105.015201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/14/2021] [Indexed: 11/07/2022]
Abstract
Transport properties of mixtures in the warm dense matter (WDM) regime play an important role in natural astrophysics. However, a physical understanding of ionic transport properties in quasisymmetric liquid mixtures has remained elusive. Here, we present extensive ab initio molecular dynamics (AIMD) simulations on the ionic diffusion and viscosity of a quasisymmetric binary nitrogen-oxygen (N-O) mixture in a wide warm dense regime of 8-120 kK and 4.5-8.0 g/cm^{3}. Diffusion and viscosity of N-O mixtures with different compositions are obtained by using the Green-Kubo formula. Unlike asymmetric mixtures, the change of proportions in N-O mixtures slightly affects the viscosity and diffusion in the strong-coupling region. Furthermore, the AIMD results are used to build and verify a global pseudo-ion in jellium (PIJ) model for ionic transport calculations. The PIJ model succeeds in reproducing the transport properties of N-O mixtures where ionization has occurred, and provides a promising alternative approach to obtaining comparable results to AIMD simulations with relatively small computational costs. Our current results highlight the characteristic features of the quasisymmetric binary mixtures and demonstrate the applicability of the PIJ model in the WDM regime.
Collapse
Affiliation(s)
- Yang-Shun Lan
- College of Physics, Sichuan University, Chengdu 610064, People's Republic of China.,National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Yun-Jun Gu
- National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Zhi-Guo Li
- National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Guo-Jun Li
- College of Physics, Sichuan University, Chengdu 610064, People's Republic of China.,National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Lei Liu
- School of Science, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhao-Qi Wang
- College of Science, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Qi-Feng Chen
- National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Xiang-Rong Chen
- College of Physics, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
4
|
Te Vrugt M. The five problems of irreversibility. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2021; 87:136-146. [PMID: 34111817 DOI: 10.1016/j.shpsa.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Thermodynamics has a clear arrow of time, characterized by the irreversible approach to equilibrium. This stands in contrast to the laws of microscopic theories, which are invariant under time-reversal. Foundational discussions of this "problem of irreversibility" often focus on historical considerations, and do therefore not take results of modern physical research on this topic into account. In this article, I will close this gap by studying the implications of dynamical density functional theory (DDFT), a central method of modern nonequilibrium statistical mechanics not previously considered in philosophy of physics, for this debate. For this purpose, the philosophical discussion of irreversibility is structured into five problems, concerned with the source of irreversibility in thermodynamics, the definition of equilibrium and entropy, the justification of coarse-graining, the approach to equilibrium and the arrow of time. For each of these problems, it is shown that DDFT provides novel insights that are of importance for both physicists and philosophers of physics.
Collapse
Affiliation(s)
- Michael Te Vrugt
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany; Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany; Philosophisches Seminar, Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany.
| |
Collapse
|
5
|
Dharodi VS, Murillo MS. Sculpted ultracold neutral plasmas. Phys Rev E 2020; 101:023207. [PMID: 32168665 DOI: 10.1103/physreve.101.023207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Ultracold neutral plasma (UNP) experiments allow for careful control of plasma properties across Coulomb coupling regimes. Here, we examine how UNPs can be used to study heterogeneous, nonequilibrium phenomena, including nonlinear waves, transport, hydrodynamics, kinetics, stopping power, and instabilities. Through a series of molecular dynamics simulations, we have explored UNPs formed with spatially modulated ionizing radiation. We have developed a computational model for such sculpted UNPs that includes an ionic screened Coulomb interaction with a spatiotemporal screening length, and Langevin-based spatial ion-electron and ion-neutral collisions. We have also developed a hydrodynamics model and have extracted its field quantities (density, flow velocity, and temperature) from the molecular dynamics simulation data, allowing us to investigate kinetics by examining moment ratios and phase-space dynamics; we find that it is possible to create UNPs that vary from nearly perfect fluids (Euler limit) to highly kinetic plasmas. We have examined plasmas in three geometries: a solid rod, a hollow rod, and a gapped slab; we have studied basic properties of these plasmas, including the spatial Coulomb coupling parameter. By varying the initial conditions, we find that we can design experimental plasmas that would allow the exploration of a wide range of phenomena, including shock and blast waves, stopping power, two-stream instabilities, and much more. Using an evaporative cooling geometry, our results suggest that much larger Coulomb couplings can be achieved, possibly in excess of 10.
Collapse
Affiliation(s)
- Vikram S Dharodi
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Michael S Murillo
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
6
|
Choi Y, Dharuman G, Murillo MS. High-frequency response of classical strongly coupled plasmas. Phys Rev E 2019; 100:013206. [PMID: 31499843 DOI: 10.1103/physreve.100.013206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 06/10/2023]
Abstract
The dynamic structure factor (DSF) of the Yukawa system is here obtained with highly converged molecular dynamics (MD) over the entire liquid phase. The data provide a rigorous test of theoretical models of ion-acoustic wave-dispersion relations, the intermediate scattering function, and the high-frequency response. We compare our MD results with seven diverse models, finding good agreement among those that enforce the three basic sum rules for dispersion properties, although one of the models has previously unreported spurious peaks. The MD simulations reveal that at intermediate frequencies ω, the high-frequency response of the DSF follows a power law, going approximately as ω^{-p}, where p>0, and p shows nontrivial dependencies on the wave vector q and the plasma parameters κ and Γ. In contrast, among the seven comparison models, the predicted high-frequency response is found to be independent of {q,κ,Γ}. This high-frequency power suggests a useful fitting form. In addition, these results expose limitations of several models and, moreover, suggest that some approaches are difficult or impossible to extend because of the lack of finite moments. We also find the double-plasmon resonance peak in our MD simulations that none of the theoretical models predicts.
Collapse
Affiliation(s)
- Yongjun Choi
- Institute for Cyber-Enabled Research, Michigan State University, East Lansing, Michigan 48824, USA
| | - Gautham Dharuman
- Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Michael S Murillo
- Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
7
|
Diaw A, Murillo MS. Excess pressure and electric fields in nonideal plasma hydrodynamics. Phys Rev E 2019; 99:063207. [PMID: 31330620 DOI: 10.1103/physreve.99.063207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Indexed: 11/07/2022]
Abstract
Nonideal plasmas have nontrivial space and time correlations, which simultaneously impact both the excess thermodynamic quantities as well as the collision processes. However, hydrodynamics models for designing and interpreting nonideal plasma experiments, such as inertial-confinement fusion experiments, typically neglect electrodynamics, although some models include electric fields indirectly through a generalized Fick's law. However, because most transport models are not computed self-consistently with the equation of state, there is double counting of the forces in the excess thermodynamic quantities and the collision terms. Here we employ the statistical mechanical hydrodynamic theory of Irving and Kirkwood [J. Chem. Phys. 18, 817 (1950)JCPSA60021-960610.1063/1.1747782] to examine inhomogeneous, nonideal plasmas that contain electric fields. We show that it is not possible to simultaneously separate terms that correspond to electric fields and excess pressure; rather, these quantities arise from the same interparticle Coulomb forces. Moreover, new terms associated with nonlocality appear in the presence of strong inhomogeneities.
Collapse
Affiliation(s)
- A Diaw
- Computational Physics and Methods Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - Michael S Murillo
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
8
|
Modules for Experiments in Stellar Astrophysics (${\mathtt{M}}{\mathtt{E}}{\mathtt{S}}{\mathtt{A}}$): Convective Boundaries, Element Diffusion, and Massive Star Explosions. ACTA ACUST UNITED AC 2018. [DOI: 10.3847/1538-4365/aaa5a8] [Citation(s) in RCA: 789] [Impact Index Per Article: 112.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|