1
|
Jordan S, Shorttle O, Rimmer PB. Tracing the inner edge of the habitable zone with sulfur chemistry. SCIENCE ADVANCES 2025; 11:eadp8105. [PMID: 39879310 PMCID: PMC11777254 DOI: 10.1126/sciadv.adp8105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
The circumstellar liquid-water habitable zone guides our search for potentially inhabited exoplanets but remains observationally untested. We show that the inner edge of the habitable zone can now be mapped among exoplanets using their lack of surface water, which, unlike the presence of water, can be unambiguously revealed by atmospheric sulfur species. Using coupled climate-chemistry modeling, we find that the observability of sulfur gases on exoplanets depends critically on the ultraviolet (UV) flux of their host star, a property with wide variation: Most M-dwarfs have a low UV flux and thereby allow the detection of sulfur gases as a tracer of dry planetary surfaces; however, the UV flux of Trappist-1 may be too high for sulfur to disambiguate uninhabitable from habitable surfaces on any of its planets. We generalize this result to show how a population-level search for sulfur chemistry on M-dwarf planets can be used to empirically define the habitable zone in the near future.
Collapse
Affiliation(s)
- Sean Jordan
- Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK
- ETH Zurich, Institute for Particle and Astrophysics, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland
| | - Oliver Shorttle
- Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Paul B. Rimmer
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| |
Collapse
|
2
|
Kuzucan A, Bolmont E, Chaverot G, Ferreira JQ, Ibelings BW, Bhatnagar S, McGinnis DF. The Role of Atmospheric Composition in Defining the Habitable Zone Limits and Supporting E. coli Growth. Life (Basel) 2025; 15:79. [PMID: 39860019 PMCID: PMC11766661 DOI: 10.3390/life15010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Studying exoplanet atmospheres is essential for assessing their potential to host liquid water and their capacity to support life (their habitability). Each atmosphere uniquely influences the likelihood of surface liquid water, defining the habitable zone (HZ)-the region around a star where liquid water can exist. However, being within the HZ does not guarantee habitability, as life requires more than just liquid water. In this study, we adopted a two-pronged approach. First, we estimated the surface conditions of planets near the HZ's inner edge under various atmospheric compositions. By utilizing a 3D climate model, we refined the inner boundaries of the HZ for planets with atmospheres dominated by H2 and CO2 for the first time. Second, we investigated microbial survival in these environments, conducting laboratory experiments on the growth and survival of E. coli K-12, focusing on the impact of different gas compositions. This innovative combination of climate modeling and biological experiments bridges theoretical climate predictions with biological outcomes. Our findings indicate that atmospheric composition significantly affects bacterial growth patterns, highlighting the importance of considering diverse atmospheres in evaluating exoplanet habitability and advancing the search for life beyond Earth.
Collapse
Affiliation(s)
- Asena Kuzucan
- Observatoire de Genève, Université de Genève, Chemin Pegasi 51, 1290 Versoix, Switzerland; (E.B.); (S.B.)
- Centre sur la Vie dans l’Univers, Université de Genève, 1211 Geneva, Switzerland; (G.C.); (J.Q.F.); (B.W.I.); (D.F.M.)
| | - Emeline Bolmont
- Observatoire de Genève, Université de Genève, Chemin Pegasi 51, 1290 Versoix, Switzerland; (E.B.); (S.B.)
- Centre sur la Vie dans l’Univers, Université de Genève, 1211 Geneva, Switzerland; (G.C.); (J.Q.F.); (B.W.I.); (D.F.M.)
| | - Guillaume Chaverot
- Centre sur la Vie dans l’Univers, Université de Genève, 1211 Geneva, Switzerland; (G.C.); (J.Q.F.); (B.W.I.); (D.F.M.)
- CNRS, IPAG, University Grenoble Alpes, F-38000 Grenoble, France
| | - Jaqueline Quirino Ferreira
- Centre sur la Vie dans l’Univers, Université de Genève, 1211 Geneva, Switzerland; (G.C.); (J.Q.F.); (B.W.I.); (D.F.M.)
- Department F.-A. FOREL for Environmental and Aquatic Sciences, Université de Genève, 1211 Geneva, Switzerland
| | - Bastiaan Willem Ibelings
- Centre sur la Vie dans l’Univers, Université de Genève, 1211 Geneva, Switzerland; (G.C.); (J.Q.F.); (B.W.I.); (D.F.M.)
- Department F.-A. FOREL for Environmental and Aquatic Sciences, Université de Genève, 1211 Geneva, Switzerland
| | - Siddharth Bhatnagar
- Observatoire de Genève, Université de Genève, Chemin Pegasi 51, 1290 Versoix, Switzerland; (E.B.); (S.B.)
- Centre sur la Vie dans l’Univers, Université de Genève, 1211 Geneva, Switzerland; (G.C.); (J.Q.F.); (B.W.I.); (D.F.M.)
- Department of Applied Physics and Institute for Environmental Sciences, Université de Genève, 1211 Geneva, Switzerland
| | - Daniel Frank McGinnis
- Centre sur la Vie dans l’Univers, Université de Genève, 1211 Geneva, Switzerland; (G.C.); (J.Q.F.); (B.W.I.); (D.F.M.)
- Department F.-A. FOREL for Environmental and Aquatic Sciences, Université de Genève, 1211 Geneva, Switzerland
| |
Collapse
|
3
|
Hochman A, Komacek TD, De Luca P. Analogous response of temperate terrestrial exoplanets and Earth's climate dynamics to greenhouse gas supplement. Sci Rep 2023; 13:11123. [PMID: 37429911 PMCID: PMC10333385 DOI: 10.1038/s41598-023-38026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023] Open
Abstract
Humanity is close to characterizing the atmospheres of rocky exoplanets due to the advent of JWST. These astronomical observations motivate us to understand exoplanetary atmospheres to constrain habitability. We study the influence greenhouse gas supplement has on the atmosphere of TRAPPIST-1e, an Earth-like exoplanet, and Earth itself by analyzing ExoCAM and CMIP6 model simulations. We find an analogous relationship between CO2 supplement and amplified warming at non-irradiated regions (night side and polar)-such spatial heterogeneity results in significant global circulation changes. A dynamical systems framework provides additional insight into the vertical dynamics of the atmospheres. Indeed, we demonstrate that adding CO2 increases temporal stability near the surface and decreases stability at low pressures. Although Earth and TRAPPIST-1e take entirely different climate states, they share the relative response between climate dynamics and greenhouse gas supplements.
Collapse
Affiliation(s)
- Assaf Hochman
- Fredy and Nadine Hermann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | | |
Collapse
|
4
|
Way MJ, Ostberg C, Foley BJ, Gillmann C, Höning D, Lammer H, O’Rourke J, Persson M, Plesa AC, Salvador A, Scherf M, Weller M. Synergies Between Venus & Exoplanetary Observations: Venus and Its Extrasolar Siblings. SPACE SCIENCE REVIEWS 2023; 219:13. [PMID: 36785654 PMCID: PMC9911515 DOI: 10.1007/s11214-023-00953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Here we examine how our knowledge of present day Venus can inform terrestrial exoplanetary science and how exoplanetary science can inform our study of Venus. In a superficial way the contrasts in knowledge appear stark. We have been looking at Venus for millennia and studying it via telescopic observations for centuries. Spacecraft observations began with Mariner 2 in 1962 when we confirmed that Venus was a hothouse planet, rather than the tropical paradise science fiction pictured. As long as our level of exploration and understanding of Venus remains far below that of Mars, major questions will endure. On the other hand, exoplanetary science has grown leaps and bounds since the discovery of Pegasus 51b in 1995, not too long after the golden years of Venus spacecraft missions came to an end with the Magellan Mission in 1994. Multi-million to billion dollar/euro exoplanet focused spacecraft missions such as JWST, and its successors will be flown in the coming decades. At the same time, excitement about Venus exploration is blooming again with a number of confirmed and proposed missions in the coming decades from India, Russia, Japan, the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). Here we review what is known and what we may discover tomorrow in complementary studies of Venus and its exoplanetary cousins.
Collapse
Affiliation(s)
- M. J. Way
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 USA
- Theoretical Astrophysics, Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Colby Ostberg
- Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521 USA
| | - Bradford J. Foley
- Department of Geosciences, Pennsylvania State University, University Park, PA USA
| | - Cedric Gillmann
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX 77005 USA
| | - Dennis Höning
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria
| | - Joseph O’Rourke
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Moa Persson
- Institut de Recherche en Astrophysique et Planétologie, Centre National de la Recherche Scientifique, Université Paul Sabatier – Toulouse III, Centre National d’Etudes Spatiales, Toulouse, France
| | | | - Arnaud Salvador
- Department of Astronomy and Planetary Science, Northern Arizona University, Box 6010, Flagstaff, AZ 86011 USA
- Habitability, Atmospheres, and Biosignatures Laboratory, University of Arizona, Tucson, AZ USA
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ USA
| | - Manuel Scherf
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, 8042 Graz, Austria
- Institute of Physics, University of Graz, Graz, Austria
- Institute for Geodesy, Technical University, Graz, Austria
| | - Matthew Weller
- Lunar and Planetary Institute, 3600 Bay Area Blvd., Houston, TX 77058 USA
| |
Collapse
|
5
|
Turbet M, Bolmont E, Chaverot G, Ehrenreich D, Leconte J, Marcq E. Day-night cloud asymmetry prevents early oceans on Venus but not on Earth. Nature 2021; 598:276-280. [PMID: 34645997 DOI: 10.1038/s41586-021-03873-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/03/2021] [Indexed: 11/09/2022]
Abstract
Earth has had oceans for nearly four billion years1 and Mars had lakes and rivers 3.5-3.8 billion years ago2. However, it is still unknown whether water has ever condensed on the surface of Venus3,4 because the planet-now completely dry5-has undergone global resurfacing events that obscure most of its history6,7. The conditions required for water to have initially condensed on the surface of Solar System terrestrial planets are highly uncertain, as they have so far only been studied with one-dimensional numerical climate models3 that cannot account for the effects of atmospheric circulation and clouds, which are key climate stabilizers. Here we show using three-dimensional global climate model simulations of early Venus and Earth that water clouds-which preferentially form on the nightside, owing to the strong subsolar water vapour absorption-have a strong net warming effect that inhibits surface water condensation even at modest insolations (down to 325 watts per square metre, that is, 0.95 times the Earth solar constant). This shows that water never condensed and that, consequently, oceans never formed on the surface of Venus. Furthermore, this shows that the formation of Earth's oceans required much lower insolation than today, which was made possible by the faint young Sun. This also implies the existence of another stability state for present-day Earth: the 'steam Earth', with all the water from the oceans evaporated into the atmosphere.
Collapse
Affiliation(s)
- Martin Turbet
- Observatoire astronomique de l'Université de Genève, Versoix, Switzerland.
| | - Emeline Bolmont
- Observatoire astronomique de l'Université de Genève, Versoix, Switzerland
| | - Guillaume Chaverot
- Observatoire astronomique de l'Université de Genève, Versoix, Switzerland
| | - David Ehrenreich
- Observatoire astronomique de l'Université de Genève, Versoix, Switzerland
| | - Jérémy Leconte
- Laboratoire d'astrophysique de Bordeaux, Université de Bordeaux, CNRS, B18N, Pessac, France
| | - Emmanuel Marcq
- LATMOS/IPSL, UVSQ, Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| |
Collapse
|
6
|
Méndez A, Rivera-Valentín EG, Schulze-Makuch D, Filiberto J, Ramírez RM, Wood TE, Dávila A, McKay C, Ceballos KNO, Jusino-Maldonado M, Torres-Santiago NJ, Nery G, Heller R, Byrne PK, Malaska MJ, Nathan E, Simões MF, Antunes A, Martínez-Frías J, Carone L, Izenberg NR, Atri D, Chitty HIC, Nowajewski-Barra P, Rivera-Hernández F, Brown CY, Lynch KL, Catling D, Zuluaga JI, Salazar JF, Chen H, González G, Jagadeesh MK, Haqq-Misra J. Habitability Models for Astrobiology. ASTROBIOLOGY 2021; 21:1017-1027. [PMID: 34382857 DOI: 10.1089/ast.2020.2342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Habitability has been generally defined as the capability of an environment to support life. Ecologists have been using Habitat Suitability Models (HSMs) for more than four decades to study the habitability of Earth from local to global scales. Astrobiologists have been proposing different habitability models for some time, with little integration and consistency among them, being different in function to those used by ecologists. Habitability models are not only used to determine whether environments are habitable, but they also are used to characterize what key factors are responsible for the gradual transition from low to high habitability states. Here we review and compare some of the different models used by ecologists and astrobiologists and suggest how they could be integrated into new habitability standards. Such standards will help improve the comparison and characterization of potentially habitable environments, prioritize target selections, and study correlations between habitability and biosignatures. Habitability models are the foundation of planetary habitability science, and the synergy between ecologists and astrobiologists is necessary to expand our understanding of the habitability of Earth, the Solar System, and extrasolar planets.
Collapse
Affiliation(s)
- Abel Méndez
- Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, Puerto Rico, USA
| | | | - Dirk Schulze-Makuch
- Center for Astronomy and Astrophysics, Technische Universität Berlin, Berlin, Germany; German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
| | | | - Ramses M Ramírez
- University of Central Florida, Department of Physics, Orlando, Florida, USA; Space Science Institute, Boulder, Colorado, USA
| | - Tana E Wood
- USDA Forest Service International Institute of Tropical Forestry, San Juan, Puerto Rico, USA
| | - Alfonso Dávila
- NASA Ames Research Center, Moffett Field, California, USA
| | - Chris McKay
- NASA Ames Research Center, Moffett Field, California, USA
| | - Kevin N Ortiz Ceballos
- Planetary Habitability Laboratory, University of Puerto Rico at Arecibo, Puerto Rico, USA
| | | | | | | | - René Heller
- Max Planck Institute for Solar System Research; Institute for Astrophysics, University of Göttingen, Germany
| | - Paul K Byrne
- North Carolina State University, Raleigh, North Carolina, USA
| | - Michael J Malaska
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Erica Nathan
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island, USA
| | - Marta Filipa Simões
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, Macau SAR, China
| | | | | | - Noam R Izenberg
- Johns Hopkins Applied Physics Laboratory, Laurel, Maryland, USA
| | - Dimitra Atri
- Center for Space Science, New York University Abu Dhabi, United Arab Emirates
| | | | | | | | | | - Kennda L Lynch
- Lunar and Planetary Institute, USRA, Houston, Texas, USA
| | | | - Jorge I Zuluaga
- Institute of Physics / FCEN - Universidad de Antioquia, Medellín, Colombia
| | - Juan F Salazar
- GIGA, Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Medellín, Colombia
| | - Howard Chen
- Northwestern University, Evanston, Illinois, USA
| | - Grizelle González
- USDA Forest Service International Institute of Tropical Forestry, San Juan, Puerto Rico, USA
| | | | - Jacob Haqq-Misra
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| |
Collapse
|
7
|
Ramirez RM. A Complex Life Habitable Zone Based On Lipid Solubility Theory. Sci Rep 2020; 10:7432. [PMID: 32366889 PMCID: PMC7198600 DOI: 10.1038/s41598-020-64436-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/13/2020] [Indexed: 11/09/2022] Open
Abstract
To find potentially habitable exoplanets, space missions employ the habitable zone (HZ), which is the region around a star (or multiple stars) where standing bodies of water could exist on the surface of a rocky planet. Follow-up atmospheric characterization could yield biosignatures signifying life. Although most iterations of the HZ are agnostic regarding the nature of such life, a recent study argues that a complex life HZ would be considerably smaller than that used in classical definitions. Here, I use an advanced energy balance model to show that such an HZ would be considerably wider than originally predicted given revised CO2 limits and (for the first time) N2 respiration limits for complex life. The width of this complex life HZ (CLHZ) increases by ~35% from ~0.95–1.2 AU to 0.95–1.31 AU in our solar system. Similar extensions are shown for stars with stellar effective temperatures between 2,600–9,000 K. I define this CLHZ using lipid solubility theory, diving data, and results from animal laboratory experiments. I also discuss implications for biosignatures and technosignatures. Finally, I discuss the applicability of the CLHZ and other HZ variants to the search for both simple and complex life.
Collapse
Affiliation(s)
- Ramses M Ramirez
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan. .,Space Science Institute, Boulder, Co, USA.
| |
Collapse
|
8
|
Clouds will Likely Prevent the Detection of Water Vapor in JWST Transmission Spectra of Terrestrial Exoplanets. ACTA ACUST UNITED AC 2020. [DOI: 10.3847/2041-8213/ab6200] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Impact of Clouds and Hazes on the Simulated JWST Transmission Spectra of Habitable Zone Planets in the TRAPPIST-1 System. ACTA ACUST UNITED AC 2019. [DOI: 10.3847/1538-4357/ab5862] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Stellar Activity Effects on Moist Habitable Terrestrial Atmospheres around M Dwarfs. ACTA ACUST UNITED AC 2019. [DOI: 10.3847/1538-4357/ab32e8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Habitability and Spectroscopic Observability of Warm M-dwarf Exoplanets Evaluated with a 3D Chemistry-Climate Model. ACTA ACUST UNITED AC 2019. [DOI: 10.3847/1538-4357/ab4f7e] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Del Genio AD, Kiang NY, Way MJ, Amundsen DS, Sohl LE, Fujii Y, Chandler M, Aleinov I, Colose CM, Guzewich SD, Kelley M. Albedos, Equilibrium Temperatures, and Surface Temperatures of Habitable Planets. THE ASTROPHYSICAL JOURNAL 2019; 884:75. [PMID: 33100349 PMCID: PMC7580787 DOI: 10.3847/1538-4357/ab3be8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The potential habitability of known exoplanets is often categorized by a nominal equilibrium temperature assuming a Bond albedo of either ∼0.3, similar to Earth, or 0. As an indicator of habitability, this leaves much to be desired, because albedos of other planets can be very different, and because surface temperature exceeds equilibrium temperature due to the atmospheric greenhouse effect. We use an ensemble of general circulation model simulations to show that for a range of habitable planets, much of the variability of Bond albedo, equilibrium temperature and even surface temperature can be predicted with useful accuracy from incident stellar flux and stellar temperature, two known parameters for every confirmed exoplanet. Earth's Bond albedo is near the minimum possible for habitable planets orbiting G stars, because of increasing contributions from clouds and sea ice/snow at higher and lower instellations, respectively. For habitable M star planets, Bond albedo is usually lower than Earth's because of near-IR H2O absorption, except at high instellation where clouds are important. We apply relationships derived from this behavior to several known exoplanets to derive zeroth-order estimates of their potential habitability. More expansive multivariate statistical models that include currently non-observable parameters show that greenhouse gas variations produce significant variance in albedo and surface temperature, while increasing length of day and land fraction decrease surface temperature; insights for other parameters are limited by our sampling. We discuss how emerging information from global climate models might resolve some degeneracies and help focus scarce observing resources on the most promising planets.
Collapse
Affiliation(s)
- Anthony D Del Genio
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
| | - Nancy Y Kiang
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
| | - Michael J Way
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
| | - David S Amundsen
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Linda E Sohl
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
- Center for Climate Systems Research, Columbia University, New York, NY 10027, USA
| | - Yuka Fujii
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Mark Chandler
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
- Center for Climate Systems Research, Columbia University, New York, NY 10027, USA
| | - Igor Aleinov
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
- Center for Climate Systems Research, Columbia University, New York, NY 10027, USA
| | - Christopher M Colose
- NASA Postdoctoral Program, Goddard Institute for Space Studies, New York, NY 10025, USA
| | | | - Maxwell Kelley
- NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA
- SciSpace LLC, 2880 Broadway, New York, NY 10025, USA
| |
Collapse
|
13
|
|
14
|
Simulations of Water Vapor and Clouds on Rapidly Rotating and Tidally Locked Planets: A 3D Model Intercomparison. ACTA ACUST UNITED AC 2019. [DOI: 10.3847/1538-4357/ab09f1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Ocean Dynamics and the Inner Edge of the Habitable Zone for Tidally Locked Terrestrial Planets. ACTA ACUST UNITED AC 2019. [DOI: 10.3847/1538-4357/aaf1a8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
|
17
|
|
18
|
Abstract
The habitable zone (HZ) is the circular region around a star(s) where standing bodies of water could exist on the surface of a rocky planet. Space missions employ the HZ to select promising targets for follow-up habitability assessment. The classical HZ definition assumes that the most important greenhouse gases for habitable planets orbiting main-sequence stars are CO2 and H2O. Although the classical HZ is an effective navigational tool, recent HZ formulations demonstrate that it cannot thoroughly capture the diversity of habitable exoplanets. Here, I review the planetary and stellar processes considered in both classical and newer HZ formulations. Supplementing the classical HZ with additional considerations from these newer formulations improves our capability to filter out worlds that are unlikely to host life. Such improved HZ tools will be necessary for current and upcoming missions aiming to detect and characterize potentially habitable exoplanets.
Collapse
|
19
|
Gebauer S, Grenfell JL, Lehmann R, Rauer H. Evolution of Earth-like Planetary Atmospheres around M Dwarf Stars: Assessing the Atmospheres and Biospheres with a Coupled Atmosphere Biogeochemical Model. ASTROBIOLOGY 2018; 18:856-872. [PMID: 30035637 DOI: 10.1089/ast.2017.1723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Earth-like planets orbiting M dwarfs are prominent targets when searching for life outside the Solar System. We apply our Coupled Atmosphere Biogeochemical model to investigate the coupling between the biosphere, geosphere, and atmosphere in order to gain insight into the atmospheric evolution of Earth-like planets orbiting M dwarfs and to understand the processes affecting biosignatures and climate on such worlds. This is the first study applying an automated chemical pathway analysis quantifying the production and destruction pathways of molecular oxygen (O2) for an Earth-like planet with an Archean O2 concentration orbiting in the habitable zone of the M dwarf star AD Leonis, which we take as a type-case of an active M dwarf. The main production arises in the upper atmosphere from carbon dioxide photolysis followed by catalytic hydrogen oxide radical (HOx) reactions. The strongest destruction does not take place in the troposphere, as was the case in Gebauer et al. ( 2017 ) for an early Earth analog planet around the Sun, but instead in the middle atmosphere where water photolysis is the strongest. Results further suggest that these atmospheres are in absolute terms less destructive for O2 than for early Earth analog planets around the Sun despite higher concentrations of reduced gases such as molecular hydrogen, methane, and carbon monoxide. Hence smaller amounts of net primary productivity are required to oxygenate the atmosphere due to a change in the atmospheric oxidative capacity, driven by the input stellar spectrum resulting in shifts in the intrafamily HOx partitioning. Under the assumption that an atmosphere of an Earth-like planet survived and evolved during the early high-activity phase of an M dwarf to an Archean-type composition, a possible "Great Oxidation Event," analogous to that on Early Earth, would have occurred earlier in time after the atmospheric composition was reached, assuming the same atmospheric O2 sources and sinks as on early Earth. Key Words: Earth-like-Oxygen-M dwarf stars-Atmosphere-Biogeochemistry-Photochemistry-Biosignatures-Earth-like planets. Astrobiology 18, 856-872.
Collapse
Affiliation(s)
- S Gebauer
- 1 Zentrum für Astronomie und Astrophysik (ZAA), Technische Universität Berlin (TUB) , Berlin, Germany
- 2 Institut für Planetenforschung (PF) , Abteilung Eaxtrasolare Planeten und Atmosphären (EPA), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - J L Grenfell
- 2 Institut für Planetenforschung (PF) , Abteilung Eaxtrasolare Planeten und Atmosphären (EPA), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - R Lehmann
- 3 Alfred-Wegener Institut , Helmholtz-Zentrum für Polar- und Meeresforschung, Potsdam, Germany
| | - H Rauer
- 1 Zentrum für Astronomie und Astrophysik (ZAA), Technische Universität Berlin (TUB) , Berlin, Germany
- 2 Institut für Planetenforschung (PF) , Abteilung Eaxtrasolare Planeten und Atmosphären (EPA), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| |
Collapse
|
20
|
|
21
|
Strategies for Constraining the Atmospheres of Temperate Terrestrial Planets with
JWST. ACTA ACUST UNITED AC 2018. [DOI: 10.3847/2041-8213/aab896] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
|
23
|
|
24
|
Demarcating Circulation Regimes of Synchronously Rotating Terrestrial Planets within the Habitable Zone. ACTA ACUST UNITED AC 2018. [DOI: 10.3847/1538-4357/aa9f1f] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|