1
|
Schardl CL, Florea S, Nagabhyru P, Pan J, Farman ML, Young CA, Rahnama M, Leuchtmann A, Sabzalian MR, Torkian M, Mirlohi A, Iannone LJ. Chemotypic diversity of bioprotective grass endophytes based on genome analyses, with new insights from a Mediterranean-climate region in Isfahan Province, Iran. Mycologia 2025; 117:34-59. [PMID: 39661454 DOI: 10.1080/00275514.2024.2430174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
Epichloë species are systemic, often seed-transmissible symbionts (endophytes) of cool-season grasses (Poaceae subfam. Poöideae) that produce up to four classes of bioprotective alkaloids. Whereas haploid Epichloë species may reproduce sexually and transmit between host plants (horizontally), many Epichloë species are polyploid hybrids that are exclusively transmitted via seeds (vertically). Therefore, the generation of, and selection on, chemotypic (alkaloid) profiles and diversity should differ between haploids and hybrids. We undertook a genome-level analysis of haploids and polyploid hybrids, emphasizing hybrids that produce lolines, which are potent broad-spectrum anti-invertebrate alkaloids that can accumulate to levels up to 2% of plant dry mass. Prior phylogenetic analysis had indicated that loline alkaloid gene clusters (LOL) in many hybrids are from the haploid species Epichloë bromicola, but no LOL-containing E. bromicola strains were previously identified. We discovered LOL-containing E. bromicola from host grasses Bromus tomentellus and Melica persica in a Mediterranean-climate region (MCR) in Isfahan Province, Iran, and from Thinopyrum intermedium in Poland. The isolates from B. tomentellus and M. persica were closely related and had nearly identical alkaloid gene profiles, and their LOL clusters were most closely related to those of several Epichloë hybrids. In contrast, several LOL genes in the isolate from T. intermedium were phylogenetically more basal in genus Epichloë, indicating trans-species polymorphism. While identifying likely hybrid ancestors, this study also revealed novel host ranges in central Iran, with the first observation of E. bromicola in host tribe Meliceae and of Epichloë festucae in host tribe Bromeae. We discuss the possibility that MCRs may be hotspots for diversification of grass-Epichloë symbioses via extended host ranges and interspecific hybridization of the symbionts.
Collapse
Affiliation(s)
- Christopher L Schardl
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Simona Florea
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Padmaja Nagabhyru
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Juan Pan
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Mark L Farman
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Carolyn A Young
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Mostafa Rahnama
- Department of Biology, Tennessee Technological University, Cookeville, Tennessee 38505, USA
| | - Adrian Leuchtmann
- Plant Ecological Genetics Group, Institute of Integrative Biology, ETH Zurich, Zurich CH-8092, Switzerland
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Mehran Torkian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Aghafakhr Mirlohi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Leopoldo J Iannone
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- CONICET-Instituto de Micología y Botánica, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
2
|
Caradus JR, Johnson LJ. Epichloë Fungal Endophytes-From a Biological Curiosity in Wild Grasses to an Essential Component of Resilient High Performing Ryegrass and Fescue Pastures. J Fungi (Basel) 2020; 6:E322. [PMID: 33261217 PMCID: PMC7720123 DOI: 10.3390/jof6040322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
The relationship between Epichloë endophytes found in a wide range of temperate grasses spans the continuum from antagonistic to mutualistic. The diversity of asexual mutualistic types can be characterised by the types of alkaloids they produce in planta. Some of these are responsible for detrimental health and welfare issues of ruminants when consumed, while others protect the host plant from insect pests and pathogens. In many temperate regions they are an essential component of high producing resilient tall fescue and ryegrass swards. This obligate mutualism between fungus and host is a seed-borne technology that has resulted in several commercial products being used with high uptake rates by end-user farmers, particularly in New Zealand and to a lesser extent Australia and USA. However, this has not happened by chance. It has been reliant on multi-disciplinary research teams undertaking excellent science to understand the taxonomic relationships of these endophytes, their life cycle, symbiosis regulation at both the cellular and molecular level, and the impact of secondary metabolites, including an understanding of their mammalian toxicity and bioactivity against insects and pathogens. Additionally, agronomic trials and seed biology studies of these microbes have all contributed to the delivery of robust and efficacious products. The supply chain from science, through seed companies and retailers to the end-user farmer needs to be well resourced providing convincing information on the efficacy and ensuring effective quality control to result in a strong uptake of these Epichloë endophyte technologies in pastoral agriculture.
Collapse
Affiliation(s)
- John R. Caradus
- Grasslanz Technology Ltd., Palmerston North PB11008, New Zealand
| | | |
Collapse
|
3
|
Shi C, An S, Yao Z, Young CA, Panaccione DG, Lee ST, Schardl CL, Li C. Toxin-producing Epichloë bromicola strains symbiotic with the forage grass Elymus dahuricus in China. Mycologia 2018. [PMID: 29528270 DOI: 10.1080/00275514.2018.1426941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cool-season grasses (Poaceae subfamily Poöideae) are an important forage component for livestock in western China, and many have seed-transmitted symbionts of the genus Epichloë, fungal endophytes that are broadly distributed geographically and in many tribes of the Poöideae. Epichloë strains can produce any of several classes of alkaloids, of which ergot alkaloids and indole-diterpenes can be toxic to mammalian and invertebrate herbivores, whereas lolines and peramine are more selective against invertebrates. The authors characterized genotypes and alkaloid profiles of Epichloë bromicola isolates symbiotic with Elymus dahuricus, an important forage grass in rangelands of China. The endophyte was seed-transmitted and occasionally produced fruiting bodies (stromata), but its sexual state was not observed on this host. The genome sequence of E. bromicola isolate E7626 from El. dahuricus in Xinjiang Province revealed gene sets for peramine, ergot alkaloids, and indole-diterpenes. In multiplex polymerase chain reaction (PCR) screens of El. dahuricus-endophyte isolates from Beijing and two locations in Shanxi Province, most were also positive for these genes. Ergovaline and other ergot alkaloids, terpendoles and other indole-diterpenes, and peramine were confirmed in El. dahuricus plants with E. bromicola. The presence of ergot alkaloids and indole-diterpenes in this grass is a potential concern for managers of grazing livestock.
Collapse
Affiliation(s)
- Chong Shi
- a College of Grassland and Environmental Science, Xinjiang Agricultural University , Urumqi , Xinjiang , China 830052
| | - Shazhou An
- a College of Grassland and Environmental Science, Xinjiang Agricultural University , Urumqi , Xinjiang , China 830052
| | - Zhengpei Yao
- b College of Agriculture, Xinjiang Agricultural University , Urumqi , Xinjiang , China 830052
| | - Carolyn A Young
- c Noble Research Institute , 2510 Sam Noble Parkway, Ardmore , Oklahoma 73401
| | - Daniel G Panaccione
- d Division of Plant and Soil Sciences , West Virginia University , Morgantown , West Virginia 26506-6108
| | - Stephen T Lee
- e Poisonous Plant Research Laboratory, Agricultural Research Service , United States Department of Agriculture , 1150 E. 1400 N., Logan , Utah 84341
| | - Christopher L Schardl
- f Department of Plant Pathology , University of Kentucky , Lexington , Kentucky 40546-0312
| | - Chunjie Li
- g State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University , Lanzhou , Gansu , China 730000
| |
Collapse
|
4
|
Leuchtmann A, Oberhofer M. The Epichloë endophytes associated with the woodland grass Hordelymus europaeus including four new taxa. Mycologia 2017; 105:1315-24. [DOI: 10.3852/12-400] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Martina Oberhofer
- Plant Ecological Genetics, Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, CH-8092 Zürich, Switzerland
| |
Collapse
|
5
|
Song H, Nan Z, Song Q, Xia C, Li X, Yao X, Xu W, Kuang Y, Tian P, Zhang Q. Advances in Research on Epichloë endophytes in Chinese Native Grasses. Front Microbiol 2016; 7:1399. [PMID: 27656171 PMCID: PMC5013147 DOI: 10.3389/fmicb.2016.01399] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 08/24/2016] [Indexed: 11/24/2022] Open
Abstract
Epichloë fungal endophytes are broadly found in cool-season grasses. The symbiosis between these grasses and Epichloë may improve the abiotic and biotic resistance of the grass plant, but some Epichloë species produce alkaloids that are toxic for livestock. Therefore, it is important to understand the characteristics of the grass-Epichloë s symbiosis so that the beneficial aspects can be preserved and the toxic effects to livestock can be avoided. Since the 1990s, Chinese researchers have conducted a series of studies on grass-Epichloë symbiosis. In this review, we describe the current state of Epichloë endophyte research in Chinese native grasses. We found that more than 77 species of native grasses in China are associated with Epichloë endophytes. In addition, we review the effects of various Epichloë species on native grass responses to abiotic and biotic stress, phylogeny, and alkaloid production. We provide an overview of the study of Epichloë species on native grasses in China and directions for future research.
Collapse
Affiliation(s)
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Pi E, Qu L, Tang X, Peng T, Jiang B, Guo J, Lu H, Du L. Application of Genetic Algorithm to Predict Optimal Sowing Region and Timing for Kentucky Bluegrass in China. PLoS One 2015; 10:e0131489. [PMID: 26154163 PMCID: PMC4496032 DOI: 10.1371/journal.pone.0131489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/02/2015] [Indexed: 11/24/2022] Open
Abstract
Temperature is a predominant environmental factor affecting grass germination and distribution. Various thermal-germination models for prediction of grass seed germination have been reported, in which the relationship between temperature and germination were defined with kernel functions, such as quadratic or quintic function. However, their prediction accuracies warrant further improvements. The purpose of this study is to evaluate the relative prediction accuracies of genetic algorithm (GA) models, which are automatically parameterized with observed germination data. The seeds of five P. pratensis (Kentucky bluegrass, KB) cultivars were germinated under 36 day/night temperature regimes ranging from 5/5 to 40/40 °C with 5 °C increments. Results showed that optimal germination percentages of all five tested KB cultivars were observed under a fluctuating temperature regime of 20/25 °C. Meanwhile, the constant temperature regimes (e.g., 5/5, 10/10, 15/15 °C, etc.) suppressed the germination of all five cultivars. Furthermore, the back propagation artificial neural network (BP-ANN) algorithm was integrated to optimize temperature-germination response models from these observed germination data. It was found that integrations of GA-BP-ANN (back propagation aided genetic algorithm artificial neural network) significantly reduced the Root Mean Square Error (RMSE) values from 0.21~0.23 to 0.02~0.09. In an effort to provide a more reliable prediction of optimum sowing time for the tested KB cultivars in various regions in the country, the optimized GA-BP-ANN models were applied to map spatial and temporal germination percentages of blue grass cultivars in China. Our results demonstrate that the GA-BP-ANN model is a convenient and reliable option for constructing thermal-germination response models since it automates model parameterization and has excellent prediction accuracy.
Collapse
Affiliation(s)
- Erxu Pi
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Liqun Qu
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Xi Tang
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, PR China
| | - Tingting Peng
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| | - Bo Jiang
- College of Biology and Food Engineering, Changshu Institute of Technology, Changshu, PR China
| | - Jiangfeng Guo
- Meteorological Bureau of Shaanxi Province, Xi’an, Shaanxi Province, PR China
| | - Hongfei Lu
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, PR China
| | - Liqun Du
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
| |
Collapse
|
7
|
Hettiarachchige IK, Ekanayake PN, Mann RC, Guthridge KM, Sawbridge TI, Spangenberg GC, Forster JW. Phylogenomics of asexual Epichloë fungal endophytes forming associations with perennial ryegrass. BMC Evol Biol 2015; 15:72. [PMID: 25902799 PMCID: PMC4458015 DOI: 10.1186/s12862-015-0349-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/14/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Perennial ryegrass (Lolium perenne L.) is one of the most important species for temperate pastoral agriculture, forming associations with genetically diverse groups of mutualistic fungal endophytes. However, only two taxonomic groups (E. festucae var. lolii and LpTG-2) have so far been described. In addition to these two well-characterised taxa, a third distinct group of previously unclassified perennial ryegrass-associated endophytes was identified as belonging to a putative novel taxon (or taxa) (PNT) in a previous analysis based on simple sequence repeat (SSR) marker diversity. As well as genotypic differences, distinctive alkaloid production profiles were observed for members of the PNT group. RESULTS A detailed phylogenetic analysis of perennial ryegrass-associated endophytes using components of whole genome sequence data was performed using complete sequences of 7 nuclear protein-encoding genes. Three independently selected genes (encoding a DEAD/DEAH box helicase [Sbp4], a glycosyl hydrolase [family 92 protein] and a MEAB protein), none of which have been previously used for taxonomic studies of endophytes, were selected together with the frequently used 'house-keeping' genes tefA and tubB (encoding translation elongation factor 1-α and β-tubulin, respectively). In addition, an endophyte-specific gene (perA for peramine biosynthesis) and the fungal-specific MT genes for mating-type control were included. The results supported previous phylogenomic inferences for the known species, but revealed distinctive patterns of diversity for the previously unclassified endophyte strains, which were further proposed to belong to not one but two distinct novel taxa. Potential progenitor genomes for the asexual endophytes among contemporary teleomorphic (sexual Epichloë) species were also identified from the phylogenetic analysis. CONCLUSIONS Unique taxonomic status for the PNT was confirmed through comparison of multiple nuclear gene sequences, and also supported by evidence from chemotypic diversity. Analysis of MT gene idiomorphs further supported a predicted independent origin of two distinct perennial ryegrass-associated novel taxa, designated LpTG-3 and LpTG-4, from different members of a similar founder population related to contemporary E. festucae. The analysis also provided higher resolution to the known progenitor contributions of previously characterised perennial ryegrass-associated endophyte taxa.
Collapse
Affiliation(s)
- Inoka K Hettiarachchige
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, Bundoora, Melbourne, Victoria, 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, Melbourne, Victoria, 3086, Australia.
- Dairy Futures Cooperative Research Centre, Melbourne, Victoria, 3083, Australia.
| | - Piyumi N Ekanayake
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, Bundoora, Melbourne, Victoria, 3083, Australia.
- Molecular Plant Breeding Cooperative Research Centre, Melbourne, Victoria, 3083, Australia.
- Dairy Futures Cooperative Research Centre, Melbourne, Victoria, 3083, Australia.
| | - Ross C Mann
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, Bundoora, Melbourne, Victoria, 3083, Australia.
- Dairy Futures Cooperative Research Centre, Melbourne, Victoria, 3083, Australia.
| | - Kathryn M Guthridge
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, Bundoora, Melbourne, Victoria, 3083, Australia.
- Molecular Plant Breeding Cooperative Research Centre, Melbourne, Victoria, 3083, Australia.
- Dairy Futures Cooperative Research Centre, Melbourne, Victoria, 3083, Australia.
| | - Timothy I Sawbridge
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, Bundoora, Melbourne, Victoria, 3083, Australia.
- Molecular Plant Breeding Cooperative Research Centre, Melbourne, Victoria, 3083, Australia.
- Dairy Futures Cooperative Research Centre, Melbourne, Victoria, 3083, Australia.
| | - German C Spangenberg
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, Bundoora, Melbourne, Victoria, 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, Melbourne, Victoria, 3086, Australia.
- Molecular Plant Breeding Cooperative Research Centre, Melbourne, Victoria, 3083, Australia.
- Dairy Futures Cooperative Research Centre, Melbourne, Victoria, 3083, Australia.
| | - John W Forster
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, Bundoora, Melbourne, Victoria, 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, Melbourne, Victoria, 3086, Australia.
- Molecular Plant Breeding Cooperative Research Centre, Melbourne, Victoria, 3083, Australia.
- Dairy Futures Cooperative Research Centre, Melbourne, Victoria, 3083, Australia.
| |
Collapse
|
8
|
Pan J, Bhardwaj M, Nagabhyru P, Grossman RB, Schardl CL. Enzymes from fungal and plant origin required for chemical diversification of insecticidal loline alkaloids in grass-Epichloë symbiota. PLoS One 2014; 9:e115590. [PMID: 25531527 PMCID: PMC4274035 DOI: 10.1371/journal.pone.0115590] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 11/29/2014] [Indexed: 11/19/2022] Open
Abstract
The lolines are a class of bioprotective alkaloids that are produced by Epichloë species, fungal endophytes of grasses. These alkaloids are saturated 1-aminopyrrolizidines with a C2 to C7 ether bridge, and are structurally differentiated by the various modifications of the 1-amino group: -NH2 (norloline), -NHCH3 (loline), -N(CH3)2 (N-methylloline), -N(CH3)Ac (N-acetylloline), -NHAc (N-acetylnorloline), and -N(CH3)CHO (N-formylloline). Other than the LolP cytochrome P450, which is required for conversion of N-methylloline to N-formylloline, the enzymatic steps for loline diversification have not yet been established. Through isotopic labeling, we determined that N-acetylnorloline is the first fully cyclized loline alkaloid, implying that deacetylation, methylation, and acetylation steps are all involved in loline alkaloid diversification. Two genes of the loline alkaloid biosynthesis (LOL) gene cluster, lolN and lolM, were predicted to encode an N-acetamidase (deacetylase) and a methyltransferase, respectively. A knockout strain lacking both lolN and lolM stopped the biosynthesis at N-acetylnorloline, and complementation with the two wild-type genes restored production of N-formylloline and N-acetylloline. These results indicated that lolN and lolM are required in the steps from N-acetylnorloline to other lolines. The function of LolM as an N-methyltransferase was confirmed by its heterologous expression in yeast resulting in conversion of norloline to loline, and of loline to N-methylloline. One of the more abundant lolines, N-acetylloline, was observed in some but not all plants with symbiotic Epichloë siegelii, and when provided with exogenous loline, asymbiotic meadow fescue (Lolium pratense) plants produced N-acetylloline, suggesting that a plant acetyltransferase catalyzes N-acetylloline formation. We conclude that although most loline alkaloid biosynthesis reactions are catalyzed by fungal enzymes, both fungal and plant enzymes are responsible for the chemical diversification steps in symbio.
Collapse
Affiliation(s)
- Juan Pan
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Minakshi Bhardwaj
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Padmaja Nagabhyru
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Robert B. Grossman
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Christopher L. Schardl
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
9
|
Shymanovich T, Saari S, Lovin ME, Jarmusch AK, Jarmusch SA, Musso AM, Charlton ND, Young CA, Cech NB, Faeth SH. Alkaloid variation among epichloid endophytes of sleepygrass (Achnatherum robustum) and consequences for resistance to insect herbivores. J Chem Ecol 2014; 41:93-104. [PMID: 25501262 DOI: 10.1007/s10886-014-0534-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 08/30/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
Epichloid endophytes are well known symbionts of many cool-season grasses that may alleviate environmental stresses for their hosts. For example, endophytes produce alkaloid compounds that may be toxic to invertebrate or vertebrate herbivores. Achnatherum robustum, commonly called sleepygrass, was aptly named due to the presence of an endophyte that causes toxic effects to livestock and wildlife. Variation in alkaloid production observed in two A. robustum populations located near Weed and Cloudcroft in the Lincoln National Forest, New Mexico, suggests two different endophyte species are present in these populations. Genetic analyses of endophyte-infected samples revealed major differences in the endophyte alkaloid genetic profiles from the two populations, which were supported with chemical analyses. The endophyte present in the Weed population was shown to produce chanoclavine I, paspaline, and terpendoles, so thus resembles the previously described Epichloë funkii. The endophyte present in the Cloudcroft population produces chanoclavineI, ergonovine, lysergic acid amide, and paspaline, and is an undescribed endophyte species. We observed very low survival rates for aphids feeding on plants infected with the Cloudcroft endophyte, while aphid survival was better on endophyte infected plants in the Weed population. This observation led to the hypothesis that the alkaloid ergonovine is responsible for aphid mortality. Direct testing of aphid survival on oat leaves supplemented with ergonovine provided supporting evidence for this hypothesis. The results of this study suggest that alkaloids produced by the Cloudcroft endophyte, specifically ergonovine, have insecticidal properties.
Collapse
Affiliation(s)
- Tatsiana Shymanovich
- Department of Biology, University of North Carolina Greensboro, 312 Eberhart Bldg., Greensboro, NC, 27412, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tadych M, Bergen MS, White JF. Epichloë spp. associated with grasses: new insights on life cycles, dissemination and evolution. Mycologia 2014; 106:181-201. [PMID: 24877257 DOI: 10.3852/106.2.181] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epichloë species with their asexual states are specialized fungi associated with cool-season grasses. they grow endophytically in tissues of aerial parts of host plants to form systemic and mostly asymptomatic associations. Their life cycles may involve vertical transmission through host seeds and/or horizontal transmission from one plant to other plants of the same species through fungal propagules. Vertical transmission has been well studied, but comparatively little research has been done on horizontal dissemination. The goal of this review is to provide new insights on modes of dissemination of systemic grass endophytes. The review addresses recent progress in research on (i) the process of growth of Epichloë endophytes in the host plant tissues, (ii) the types and development of reproductive structures of the endophyte, (iii) the role of the reproductive structures in endophyte dissemination and host plant infection processes and (iv) some ecological and evolutionary implications of their modes of dissemination. Research in the Epichloë grass endophytes has accelerated in the past 25 y and has demonstrated the enormous complexity in endophyte-grass symbioses. There still remain large gaps in our understanding of the role and functions of these fungi in agricultural systems and understanding the functions, ecology and evolution of these endophytes in natural grass populations.
Collapse
|
11
|
Leuchtmann A, Bacon CW, Schardl CL, White JF, Tadych M. Nomenclatural realignment of Neotyphodium species with genus Epicholë. Mycologia 2014; 106:202-15. [PMID: 24459125 DOI: 10.3852/13-251] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nomenclatural rule changes in the International Code of Nomenclature for algae, fungi and plants, adopted at the 18th International Botanical Congress in Melbourne, Australia, in 2011, provide for a single name to be used for each fungal species. The anamorphs of Epichloë species have been classified in genus Neotyphodium, the form genus that also includes most asexual Epichloë descendants. A nomenclatural realignment of this monophyletic group into one genus would enhance a broader understanding of the relationships and common features of these grass endophytes. Based on the principle of priority of publication we propose to classify all members of this clade in the genus Epichloë. We have reexamined classification of several described Epichloë and Neotyphodium species and varieties and propose new combinations and states. In this treatment we have accepted 43 unique taxa in Epichloë, including distinct species, subspecies, and varieties. We exclude from Epichloë the two taxa Neotyphodium starrii, as nomen dubium, and Neotyphodium chilense, as an unrelated taxon.
Collapse
|
12
|
Schardl CL, Florea S, Pan J, Nagabhyru P, Bec S, Calie PJ. The epichloae: alkaloid diversity and roles in symbiosis with grasses. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:480-8. [PMID: 23850071 PMCID: PMC3874428 DOI: 10.1016/j.pbi.2013.06.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 05/20/2023]
Abstract
Epichloae (Epichloë and Neotyphodium species; Clavicipitaceae) are fungi that live in systemic symbioses with cool-season grasses, and many produce alkaloids that are deterrent or toxic to herbivores. The epichloae colonize much of the aerial plant tissues, and most benignly colonize host seeds to transmit vertically. Of their four chemical classes of alkaloids, the ergot alkaloids and indole-diterpenes are active against mammals and insects, whereas peramine and lolines specifically affect insects. Comparative genomic analysis of Clavicipitaceae reveals a distinctive feature of the epichloae, namely, large repeat blocks in their alkaloid biosynthesis gene loci. Such repeat blocks can facilitate gene losses, mutations, and duplications, thus enhancing diversity of alkaloid structures within each class. We suggest that alkaloid diversification is selected especially in the vertically transmissible epichloae.
Collapse
Affiliation(s)
- Christopher L Schardl
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546-0312, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Schardl CL, Young CA, Pan J, Florea S, Takach JE, Panaccione DG, Farman ML, Webb JS, Jaromczyk J, Charlton ND, Nagabhyru P, Chen L, Shi C, Leuchtmann A. Currencies of mutualisms: sources of alkaloid genes in vertically transmitted epichloae. Toxins (Basel) 2013; 5:1064-88. [PMID: 23744053 PMCID: PMC3717770 DOI: 10.3390/toxins5061064] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/17/2013] [Accepted: 05/29/2013] [Indexed: 11/17/2022] Open
Abstract
The epichloae (Epichloë and Neotyphodium species), a monophyletic group of fungi in the family Clavicipitaceae, are systemic symbionts of cool-season grasses (Poaceae subfamily Poöideae). Most epichloae are vertically transmitted in seeds (endophytes), and most produce alkaloids that attack nervous systems of potential herbivores. These protective metabolites include ergot alkaloids and indole-diterpenes (tremorgens), which are active in vertebrate systems, and lolines and peramine, which are more specific against invertebrates. Several Epichloë species have been described which are sexual and capable of horizontal transmission, and most are vertically transmissible also. Asexual epichloae are mainly or exclusively vertically transmitted, and many are interspecific hybrids with genomic contributions from two or three ancestral Epichloë species. Here we employ genome-scale analyses to investigate the origins of biosynthesis gene clusters for ergot alkaloids (EAS), indole-diterpenes (IDT), and lolines (LOL) in 12 hybrid species. In each hybrid, the alkaloid-gene and housekeeping-gene relationships were congruent. Interestingly, hybrids frequently had alkaloid clusters that were rare in their sexual ancestors. Also, in those hybrids that had multiple EAS, IDT or LOL clusters, one cluster lacked some genes, usually for late pathway steps. Possible implications of these findings for the alkaloid profiles and endophyte ecology are discussed.
Collapse
Affiliation(s)
- Christopher L. Schardl
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA; E-Mails: (J.P.); (S.F.); (M.L.F.); (P.N.); (L.C.); (C.S.)
| | - Carolyn A. Young
- Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA; E-Mails: (C.A.Y.); (J.E.T.); (N.D.C.)
| | - Juan Pan
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA; E-Mails: (J.P.); (S.F.); (M.L.F.); (P.N.); (L.C.); (C.S.)
| | - Simona Florea
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA; E-Mails: (J.P.); (S.F.); (M.L.F.); (P.N.); (L.C.); (C.S.)
| | - Johanna E. Takach
- Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA; E-Mails: (C.A.Y.); (J.E.T.); (N.D.C.)
| | - Daniel G. Panaccione
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA; E-Mail:
| | - Mark L. Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA; E-Mails: (J.P.); (S.F.); (M.L.F.); (P.N.); (L.C.); (C.S.)
| | - Jennifer S. Webb
- Advanced Genetic Technologies Center, University of Kentucky, Lexington, KY 40546, USA; E-Mails: (J.S.W.); (J.J.)
| | - Jolanta Jaromczyk
- Advanced Genetic Technologies Center, University of Kentucky, Lexington, KY 40546, USA; E-Mails: (J.S.W.); (J.J.)
| | - Nikki D. Charlton
- Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA; E-Mails: (C.A.Y.); (J.E.T.); (N.D.C.)
| | - Padmaja Nagabhyru
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA; E-Mails: (J.P.); (S.F.); (M.L.F.); (P.N.); (L.C.); (C.S.)
| | - Li Chen
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA; E-Mails: (J.P.); (S.F.); (M.L.F.); (P.N.); (L.C.); (C.S.)
- School of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Chong Shi
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA; E-Mails: (J.P.); (S.F.); (M.L.F.); (P.N.); (L.C.); (C.S.)
- School of Grassland & Environmental Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Adrian Leuchtmann
- Institute of Integrative Biology, ETH Zürich, Zürich CH-8092, Switzerland; E-Mail:
| |
Collapse
|
14
|
Zhu MJ, Ren AZ, Wen W, Gao YB. Diversity and taxonomy of endophytes fromLeymus chinensisin the Inner Mongolia steppe of China. FEMS Microbiol Lett 2013; 340:135-45. [DOI: 10.1111/1574-6968.12083] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Min-Jie Zhu
- Department of Plant Biology and Ecology; College of Life Science; Nankai University; Tianjin; China
| | - An-Zhi Ren
- Department of Plant Biology and Ecology; College of Life Science; Nankai University; Tianjin; China
| | - Wei Wen
- Department of Plant Biology and Ecology; College of Life Science; Nankai University; Tianjin; China
| | - Yu-Bao Gao
- Department of Plant Biology and Ecology; College of Life Science; Nankai University; Tianjin; China
| |
Collapse
|
15
|
Taxonomic placement of Epichloë poae sp. nov. and horizontal dissemination to seedlings via conidia. FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0170-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|