1
|
Yoo GS, Sung SY, Song JH, Kim BH, Kwak YK, Kim KS, Byun HK, Kim YS, Kim YJ. Evidence-based clinical recommendations for hypofractionated radiotherapy: exploring efficacy and safety - Part 3. Genitourinary and gynecological cancers. Radiat Oncol J 2024; 42:171-180. [PMID: 39354820 PMCID: PMC11467485 DOI: 10.3857/roj.2023.01046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 10/03/2024] Open
Abstract
Hypofractionated radiotherapy (RT) has become a trend in the modern era, as advances in RT techniques, including intensity-modulated RT and image-guided RT, enable the precise and safe delivery of high-dose radiation. Hypofractionated RT offers convenience and can reduce the financial burden on patients by decreasing the number of fractions. Furthermore, hypofractionated RT is potentially more beneficial for tumors with a low α/β ratio compared with conventional fractionation RT. Therefore, hypofractionated RT has been investigated for various primary cancers and has gained status as a standard treatment recommended in the guidelines. In genitourinary (GU) cancer, especially prostate cancer, the efficacy, and safety of various hypofractionated dose schemes have been evaluated in numerous prospective clinical studies, establishing the standard hypofractionated RT regimen. Hypofractionated RT has also been explored for gynecological (GY) cancer, yielding relevant evidence in recent years. In this review, we aimed to summarize the representative evidence and current trends in clinical studies on hypofractionated RT for GU and GY cancers addressing several key questions. In addition, the objective is to offer suggestions for the available dose regimens for hypofractionated RT by reviewing protocols from previous clinical studies.
Collapse
Affiliation(s)
- Gyu Sang Yoo
- Department of Radiation Oncology, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Soo-Yoon Sung
- Department of Radiation Oncology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin Ho Song
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byoung Hyuck Kim
- Department of Radiation Oncology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoo-Kang Kwak
- Department of Radiation Oncology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung Su Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hwa Kyung Byun
- Department of Radiation Oncology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Yeon-Sil Kim
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeon Joo Kim
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Corrao G, Marvaso G, Mastroleo F, Biffi A, Pellegrini G, Minari S, Vincini MG, Zaffaroni M, Zerini D, Volpe S, Gaito S, Mazzola GC, Bergamaschi L, Cattani F, Petralia G, Musi G, Ceci F, De Cobelli O, Orecchia R, Alterio D, Jereczek-Fossa BA. Photon vs proton hypofractionation in prostate cancer: A systematic review and meta-analysis. Radiother Oncol 2024; 195:110264. [PMID: 38561122 DOI: 10.1016/j.radonc.2024.110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND High-level evidence on hypofractionated proton therapy (PT) for localized and locally advanced prostate cancer (PCa) patients is currently missing. The aim of this study is to provide a systematic literature review to compare the toxicity and effectiveness of curative radiotherapy with photon therapy (XRT) or PT in PCa. METHODS PubMed, Embase, and the Cochrane Library databases were systematically searched up to April 2022. Men with a diagnosis of PCa who underwent curative hypofractionated RT treatment (PT or XRT) were included. Risk of grade (G) ≥ 2 acute and late genitourinary (GU) OR gastrointestinal (GI) toxicity were the primary outcomes of interest. Secondary outcomes were five-year biochemical relapse-free survival (b-RFS), clinical relapse-free, distant metastasis-free, and prostate cancer-specific survival. Heterogeneity between study-specific estimates was assessed using Chi-square statistics and measured with the I2 index (heterogeneity measure across studies). RESULTS A total of 230 studies matched inclusion criteria and, due to overlapped populations, 160 were included in the present analysis. Significant lower rates of G ≥ 2 acute GI incidence (2 % vs 7 %) and improved 5-year biochemical relapse-free survival (95 % vs 91 %) were observed in the PT arm compared to XRT. PT benefits in 5-year biochemical relapse-free survival were maintained for the moderate hypofractionated arm (p-value 0.0122) and among patients in intermediate and low-risk classes (p-values < 0.0001 and 0.0368, respectively). No statistically relevant differences were found for the other considered outcomes. CONCLUSION The present study supports that PT is safe and effective for localized PCa treatment, however, more data from RCTs are needed to draw solid evidence in this setting and further effort must be made to identify the patient subgroups that could benefit the most from PT.
Collapse
Affiliation(s)
- Giulia Corrao
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Giulia Marvaso
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Federico Mastroleo
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Annalisa Biffi
- National Centre of Healthcare Research and Pharmacoepidemiology, University of Milano-Bicocca, Milan, Italy; Unit of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy
| | - Giacomo Pellegrini
- National Centre of Healthcare Research and Pharmacoepidemiology, University of Milano-Bicocca, Milan, Italy; Unit of Biostatistics, Epidemiology and Public Health, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy
| | - Samuele Minari
- National Centre of Healthcare Research and Pharmacoepidemiology, University of Milano-Bicocca, Milan, Italy
| | - Maria Giulia Vincini
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| | - Mattia Zaffaroni
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| | - Dario Zerini
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefania Volpe
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Simona Gaito
- Proton Clinical Outcomes Unit, The Christie NHS Proton Beam Therapy Centre, Manchester, UK; Division of Clinical Cancer Science, School of Medical Sciences, The University of Manchester, Manchester, UK
| | | | - Luca Bergamaschi
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Cattani
- Unit of Medical Physics, European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Gennaro Musi
- Division of Urology, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Ceci
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Division of Nuclear Medicine and Theranostics, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Ottavio De Cobelli
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Division of Urology, European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Orecchia
- Scientific Directorate, European Institute of Oncology IRCCS, Milan, Italy
| | - Daniela Alterio
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Choi HS, Jo GS, Chae JP, Lee SB, Kim CH, Jeong BK, Jeong H, Lee YH, Ha IB, Kang KM, Song JH. Defining the Optimal Time of Adaptive Replanning in Prostate Cancer Patients with Weight Change during Volumetric Arc Radiotherapy: A Dosimetric and Mathematical Analysis Using the Gamma Index. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2017; 2017:4149591. [PMID: 29403539 PMCID: PMC5748323 DOI: 10.1155/2017/4149591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/24/2017] [Accepted: 11/06/2017] [Indexed: 12/25/2022]
Abstract
We evaluated the changes in the dose distribution of radiation during volumetric arc radiotherapy (VMAT), to determine the right time for adaptive replanning in prostate cancer patients with progressive weight (WT) changes. Five prostate cancer patients treated with VMAT were selected for dosimetric analysis. On the original computed tomography images, nine artificial body contours were created to reflect progressive WT changes. Combined with three different photon energies (6, 10, and 15-MV), 27 comparable virtual VMAT plans were created per patient. The dosimetric analysis included evaluation of target coverage (D95%, Dmax), conformity index, homogeneity index, and organs at risk doses. The dose differences among the plans were determined using the gamma index analysis and were compared with the dosimetric analysis. Mean D95% became lower than 98% when body contour expanded by 2.0 cm or more and Dmax became higher than 107% when body contour contracted by 1.5 cm or more in 10-MV plans. This cut-off values correlated well with gamma index analysis results. Adaptive replanning should, therefore, be considered if the depth of body contour becomes 1.5 cm smaller (WT loss) or 2.0 cm larger (WT gain) in patients treated by VMAT with 10-MV photons.
Collapse
Affiliation(s)
- Hoon Sik Choi
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon 51472, Republic of Korea
| | - Guang Sub Jo
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon 51472, Republic of Korea
| | - Jong Pyo Chae
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon 51472, Republic of Korea
| | - Sang Bong Lee
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon 51472, Republic of Korea
| | - Chul Hang Kim
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon 51472, Republic of Korea
| | - Bae Kwon Jeong
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hojin Jeong
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Yun Hee Lee
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - In Bong Ha
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Ki Mun Kang
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin Ho Song
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon 51472, Republic of Korea
- Institute of Health Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
4
|
Park JM, Park SY, Choi CH, Chun M, Kim JH, Kim JI. Treatment plan comparison between Tri-Co-60 magnetic-resonance image-guided radiation therapy and volumetric modulated arc therapy for prostate cancer. Oncotarget 2017; 8:91174-91184. [PMID: 29207634 PMCID: PMC5710914 DOI: 10.18632/oncotarget.20039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/25/2017] [Indexed: 12/29/2022] Open
Abstract
To investigate the plan quality of tri-Co-60 intensity-modulated radiation therapy (IMRT) with magnetic-resonance image-guided radiation therapy compared with volumetric-modulated arc therapy (VMAT) for prostate cancer. Twenty patients with intermediate-risk prostate cancer, who received radical VMAT were selected. Additional tri-Co-60 IMRT plans were generated for each patient. Both primary and boost plans were generated with tri-Co-60 IMRT and VMAT techniques. The prescription doses of the primary and boost plans were 50.4 Gy and 30.6 Gy, respectively. The primary and boost planning target volumes (PTVs) of the tri-Co-60 IMRT were generated with 3 mm margins from the primary clinical target volume (CTV, prostate + seminal vesicle) and a boost CTV (prostate), respectively. VMAT had a primary planning target volume (primary CTV + 1 cm or 2 cm margins) and a boost PTV (boost CTV + 0.7 cm margins), respectively. For both tri-Co-60 IMRT and VMAT, all the primary and boost plans were generated that 95% of the target volumes would be covered by the 100% of the prescription doses. Sum plans were generated by summation of primary and boost plans. In sum plans, the average values of V70 Gy of the bladder of tri-Co-60 IMRT vs. VMAT were 4.0% ± 3.1% vs. 10.9% ± 6.7%, (p < 0.001). Average values of V70 Gy of the rectum of tri-Co-60 IMRT vs. VMAT were 5.2% ± 1.8% vs. 19.1% ± 4.0% (p < 0.001). The doses of tri-Co-60 IMRT delivered to the bladder and rectum were smaller than those of VMAT while maintaining identical target coverage in both plans.
Collapse
Affiliation(s)
- Jong Min Park
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Robotics Research Laboratory for Extreme Environments, Advanced Institutes of Convergence Technology, Suwon, Republic of Korea
| | - So-Yeon Park
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang Heon Choi
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Minsoo Chun
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Ho Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung-In Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Park JM, Park SY, Kim JI, Kang HC, Choi CH. A comparison of treatment plan quality between Tri-Co-60 intensity modulated radiation therapy and volumetric modulated arc therapy for cervical cancer. Phys Med 2017; 40:11-16. [PMID: 28760506 DOI: 10.1016/j.ejmp.2017.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/12/2017] [Accepted: 06/15/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To investigate the plan quality of tri-Co-60 intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) for cervical cancer. METHODS A total of 20 patients who received postoperative radiotherapy for cervical cancer were selected. For each patient, a tri-Co-60 IMRT plan for which the target volume was the planning target volume (PTV) generated by adding 1mm isotropic margins from the clinical target volume (CTV) and a VMAT plan for which the target volume was the PTV generated by adding 7mm and 10mm margins from the CTV were generated. The tri-Co-60 IMRT plans were generated with the ViewRay™ system while the VMAT plans were generated with 15-MV photon beams from a linear accelerator (prescription dose=50.4Gy in 28 fractions). RESULTS The average volumes of the PTVs and CTVs were 704.9cc±87.8cc and 271.6cc±51.6cc, respectively. No noticeable differences in the dose-volumetric parameters for the target volumes were observed between the tri-Co-60 IMRT and VMAT plans. The values of V40Gy for the small bowel and rectal wall, V45Gy of the bladder, and V35Gy of the femoral heads for the VMAT plans were 14.6%±7.8%, 54.4%±4.2%, 30.0%±4.7%, and 8.9%±3.3%, respectively. Those of the tri-Co-60 IMRT plans were 2.8%±2.1%, 23.0%±8.9%, 17.1%±6.1%, and 0.3%±0.4%, respectively. CONCLUSIONS Owing to the target margin reduction capability, the tri-Co-60 IMRT plans were more favorable than the VMAT plans for cervical cancer.
Collapse
Affiliation(s)
- Jong Min Park
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Center for Convergence Research on Robotics, Advanced Institutes of Convergence Technology, Suwon, Republic of Korea
| | - So-Yeon Park
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung-In Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyun-Cheol Kang
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chang Heon Choi
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|