1
|
Chaúque BJM, da Silva TCB, Dos Santos DL, Benitez GB, Chaúque LGH, Benetti AD, Zanette RA, Rott MB. Global prevalence of free-living amoebae in solid matrices - A systematic review with meta-analysis. Acta Trop 2023; 247:107006. [PMID: 37633571 DOI: 10.1016/j.actatropica.2023.107006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
The ubiquitous free-living amoebae (FLA) are microorganisms of significant medical, sanitary, and ecological importance. However, their characterization within solid matrices such as soil, dust, sediment, mud, sludge, and compost remain to be systematized. In this study, we conducted a systematic review with meta-analysis to explore the global distribution of FLA in solid matrices. From the analysis of 104 out of 4,414 scientific articles retrieved from different databases, it was found that the general global prevalence of FLA in solid matrices was of 55.13% (95% confidence interval (CI) 49.32-60.94). Specifically, FLA prevalence was high in soil (72.40%, 95% CI 69.08-75.73), sediment (57.91%, 95% CI 50.01-65.81), mud (52.90%, 95% CI 24.01-81.78), dust (48.60%, 95% CI 43.00-54.19), and sewage sludge (40.19%, 95% CI 30.68-49.70). In aerosols it was comparatively lower (17.21%, 95% CI 12.76-21.66). Acanthamoeba spp. (52.23%) and Hartmanella/Vermamoeba spp. (36.06%) were found to be more prevalent, whereas Naegleria spp. (34.98%) and Balamuthia spp. (27.32%) were less prevalent. The distribution of the highest global prevalence values for species of Acanthamoeba spp., considering different publication periods of the studies, is as follows: A. hatchetti (51.46%), A. rhysodes (47.49%), A. polyphaga (36.37%), A. culbertsoni (34.31%), A. castellanii (34.21%), and A. lenticulata (32.82%). For other FLA species, the distribution is: Hartmannella/Vermamoeba vermiformis (91.57%), Naegleria fowleri (42.32%), Naegleria gruberi (32.39%), and Balamuthia mandrillaris (25%). The most prevalent Acanthamoeba genotypes were T4 (33.38%) and T3 (23.94%). Overall, the global prevalence of FLA in solid matrices is as high as or greater than that reported in water by previous systematic reviews. Thus, actions aimed at reducing exposure to FLA or exploring their ecological dynamics should consider not only water but also the various solid matrices. The finding outlined here can provide valuable insights for such actions, e.g., informing on the level of exposure to FLA, or on the microbial biodiversity of specific environmental compartments.
Collapse
Affiliation(s)
- Beni Jequicene Mussengue Chaúque
- Graduate Program in Agricultural and Environmental Microbiology, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Brazil; Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Rio Grande do Sul, Brazil; Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa Branch, Lichinga, Mozambique
| | - Thaisla Cristiane Borella da Silva
- Graduate Program in Agricultural and Environmental Microbiology, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Brazil
| | - Denise Leal Dos Santos
- CAPES Clinical Research Pilot Program at Hospital de Clínicas de Porto Alegre, Rio Grande do Sul, Brazil
| | - Guilherme Brittes Benitez
- Industrial and Systems Engineering Graduate Program, Polytechnic School, Pontifical Catholic University of Parana (PUCPR), Brazil
| | | | | | - Régis Adriel Zanette
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Rio Grande do Sul, Brazil
| | - Marilise Brittes Rott
- Graduate Program in Agricultural and Environmental Microbiology, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Padua MFFE, Masangkay FR, Alejandro GJD, Milanez GDJ. Detection of Acanthamoeba spp. in groundwater sources in a rural area in the Philippines. JOURNAL OF WATER AND HEALTH 2023; 21:138-146. [PMID: 36705503 DOI: 10.2166/wh.2023.258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Research on free-living amoebae (FLA) and its public health implication as an etiologic agent of parasitic infection in humans has recently gained traction in the Philippines. This study aimed to identify potential FLAs in collected groundwater samples from Masinloc, Zambales, Philippines. Fifty-four (54) water samples were collected in 250-mL sterile polyethylene containers by purposive sampling from selected groundwater sources in six (6) barangays of Masinloc. The samples were vacuum filtered through a 1.2-μm pore glass microfiber filter, cultured onto non-nutrient agar (NNA) lawned with Escherichia coli, and observed microscopically for amoebic growth for 14 days using light microscopy. Amoebic growth was observed in 11.1% (6/54) of water samples. DNAs from positive samples were extracted and were made to react with polymerase chain reaction using Acanthamoeba-specific JDP1 (5'-GGCCCAGATCGTTTACCGTGAA-3') and JDP2 (5'-TCTCACAAGCTGCTAGGGAGTCA-3') primers, and universal primer Euk A (5'-AACCTGGTTGATCCTGCCAGT-3') and Euk B (5'-TGATCCTTCTGCAGGTTCACCTAC-3'). The presence of Acanthamoeba genotypes T4, T7, and T11 was confirmed using molecular and phylogenetic analysis. Our results confirmed that groundwater sources from two of six sampling sites (33.3%) in Masinloc, Zambales, were contaminated with potentially pathogenic FLAs. Proper identification of risk factors that may cause contamination consequently leads to the implementation of programs that will prevent future infections.
Collapse
Affiliation(s)
- Mark F F E Padua
- The Graduate School, University of Santo Tomas, Manila 1015, Philippines; Department of Medical Technology, Far Eastern University, Manila 1008, Philippines
| | - Frederick Ramirez Masangkay
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila 1015, Philippines E-mail:
| | | | - Giovanni De Jesus Milanez
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila 1015, Philippines E-mail:
| |
Collapse
|
3
|
Mohammady A, Dalimi A, Ghafarifar F, Akbari M, Pirestani M. Genotyping of Acanthamoeba Isolated from Hospital Environments and Thermal Water of Recreational Baths in Markazi Province, Iran. IRANIAN JOURNAL OF PARASITOLOGY 2023; 18:38-47. [PMID: 37197073 PMCID: PMC10183454 DOI: 10.18502/ijpa.v18i1.12378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/11/2022] [Indexed: 05/19/2023]
Abstract
Background Due to the opportunism character of Acanthamoeba, the presence of this parasite in the thermal water of recreational baths and hospital environments can be a risk to the health of staff, patients and others. The aim of this study was to investigate the distribution of potentially pathogenic Acanthamoeba genotypes isolated from the hospital environment and the thermal water of recreational baths in Markazi Province, central Iran. Methods Overall, 180 samples including thermal water from recreational baths in Mahallat City and dust, soil and water from different hospitals of Arak, Farahan and Komijan cities, central Iran were collected. The presence of Acanthamoeba was investigated using microscopic examination and molecular methods. The PCR and sequencing was performed based on a specific 18S fragment of ribosomal DNA. Results Based on the microscopic survey, totally 134 positive samples were detected including 35% in thermal water samples and 44.7% in hospital samples. In molecular analysis, 53.5% of the samples were identified as Acanthamoeba and 46.7% as Protacanthamoeba bohemica. The genotypes were detected as T4 (33.3%), T2 (10%), T11 (6.7%), and T5 (3.3%). Conclusion The T4 was the most common genotype found in hospitals sampling sites while the T2 genotype and P. bohemica were detected in thermal water sampling sites.
Collapse
Affiliation(s)
- Alireza Mohammady
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghafarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Akbari
- Department of Microbiology, Arak University of Medical Sciences, Arak, Iran
| | - Majid Pirestani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Distribution and Current State of Molecular Genetic Characterization in Pathogenic Free-Living Amoebae. Pathogens 2022; 11:pathogens11101199. [PMID: 36297255 PMCID: PMC9612019 DOI: 10.3390/pathogens11101199] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
Free-living amoebae (FLA) are protozoa widely distributed in the environment, found in a great diversity of terrestrial biomes. Some genera of FLA are linked to human infections. The genus Acanthamoeba is currently classified into 23 genotypes (T1-T23), and of these some (T1, T2, T4, T5, T10, T12, and T18) are known to be capable of causing granulomatous amoebic encephalitis (GAE) mainly in immunocompromised patients while other genotypes (T2, T3, T4, T5, T6, T10, T11, T12, and T15) cause Acanthamoeba keratitis mainly in otherwise healthy patients. Meanwhile, Naegleria fowleri is the causative agent of an acute infection called primary amoebic meningoencephalitis (PAM), while Balamuthia mandrillaris, like some Acanthamoeba genotypes, causes GAE, differing from the latter in the description of numerous cases in patients immunocompetent. Finally, other FLA related to the pathologies mentioned above have been reported; Sappinia sp. is responsible for one case of amoebic encephalitis; Vermamoeba vermiformis has been found in cases of ocular damage, and its extraordinary capacity as endocytobiont for microorganisms of public health importance such as Legionella pneumophila, Bacillus anthracis, and Pseudomonas aeruginosa, among others. This review addressed issues related to epidemiology, updating their geographic distribution and cases reported in recent years for pathogenic FLA.
Collapse
|
5
|
Pazoki H, Niyyati M, Javanmard E, Lasjerdi Z, Spotin A, Mirjalali H, Behravan MR. Isolation and Phylogenetic Analysis of Free-Living Amoebae (Acanthamoeba, Naegleria, and Vermamoeba) in the Farmland Soils and Recreational Places in Iran. Acta Parasitol 2020; 65:36-43. [PMID: 31571139 DOI: 10.2478/s11686-019-00126-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/17/2019] [Indexed: 11/20/2022]
Abstract
PURPOSE Free-living amoeba (FLA) including Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria are among the soil-born parasites. There are reports of FLA-related keratitis with a history of contact with soil and dust sources, particularly among the farmers. Due to lack of the previous studies on the farmland soils and a limited number of researches conducted on recreational soils in Iran, the present study was conducted. METHODS A total of 93 soil samples including farming lands and recreational places were tested for the presence of Acanthamoeba spp. Balamuthia mandrillaris, Naegleria, and Vermamoeba using morphological key and sequencing-based tools. Pathogenicity of Acanthamoeba positive strains was also evaluated. To verify genetic associations and taxonomic status of isolated amoeba, a phylogenetic tree was built by MEGA 5.05 software inferred by the 18S rRNA gene based on maximum likelihood algorithm. RESULTS Overall, 28 samples (30%) were contaminated with potentially pathogenic FLA, and according to the sequencing data, 17 strains were successfully sequenced. The isolated Acanthamoeba belonged to T2, T4, T5, mixed T4 and T5 contaminations, and T11. ITS sequencing revealed the occurrence of one strain of Naegleria canariensis. Four strains of Vermamoeba vermiformis were also confirmed. Morphological survey and PCR assay failed to show any positive results for Balamuthia mandrillaris. Pathogenic potential of the Acanthamoeba strains showed that T2, T4, and T11 genotypes were highly pathogenic, whereas T5 genotypes demonstrated lower pathogenic potential. CONCLUSION The results indicate that soil could be a serious hazard to human health, and therefore, further studies are expected to investigate the source of infection in patients developing FLA-related diseases. The present study is the first to investigate FLA in the farmland soils in Iran and the first to report the presence of N. canariensis in the country.
Collapse
Affiliation(s)
- Hossein Pazoki
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ehsan Javanmard
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Lasjerdi
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adel Spotin
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Reza Behravan
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Kalra SK, Sharma P, Shyam K, Tejan N, Ghoshal U. Acanthamoeba and its pathogenic role in granulomatous amebic encephalitis. Exp Parasitol 2019; 208:107788. [PMID: 31647916 DOI: 10.1016/j.exppara.2019.107788] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/11/2019] [Accepted: 10/19/2019] [Indexed: 01/13/2023]
Abstract
Acanthamoeba is a free-living amoeba that is widely distributed in the environment. It is an opportunist protist, which is known to cause rare yet fatal infection of the central nervous system (CNS), granulomatous amebic encephalitis (GAE) in humans. GAE cases are increasingly been reported among immunocompromised patients, with few cases in immunocompetent hosts. Diagnosis of GAE primarily includes neuroimaging, microscopy, cerebrospinal fluid (CSF) culture, histopathology, serology and molecular techniques. Early diagnosis is vital for proper management of infected patients. Combination therapeutic approach has been tried in various GAE cases reported worldwide. We tried to present a comprehensive review, which summarizes on the epidemiology of GAE caused by Acanthamoeba along with the associated clinical symptoms, risk factors, diagnosis and treatment of GAE among infected patients.
Collapse
Affiliation(s)
- Sonali K Kalra
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Distt. Solan, 173229, HP, India.
| | - Palvi Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Distt. Solan, 173229, HP, India
| | - Kirti Shyam
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Distt. Solan, 173229, HP, India
| | - Nidhi Tejan
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareili Road, Lucknow, 226014, UP, India
| | - Ujjala Ghoshal
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareili Road, Lucknow, 226014, UP, India
| |
Collapse
|
7
|
Mirahmadi H, Nia MM, Ebrahimzadeh A, Mehravaran A, Shafiei R, Rahimi MT, Emameh RZ, Barker HR. Genotyping determination of Acanthamoeba strains: an original study and a systematic review in Iran. JOURNAL OF WATER AND HEALTH 2019; 17:717-727. [PMID: 31638023 DOI: 10.2166/wh.2019.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study aimed to detect the presence of Acanthamoeba spp. in different water resources of Zahedan, southeast of Iran, and also systematically reviewed all publications regarding Acanthamoeba in Iran (2005-2018). Fifty water samples were collected from different water resources in Zahedan. The positive samples were identified morphologically and subjected to polymerase chain reaction (PCR) using fragments of 18S rRNA. In the systematic review, data collection using particular terms was carried out using the following electronic databases including Science Direct, ISI Web of Science, MEDLINE, EBSCO, Scopus, and Google Scholar. A total of 17 (34%) samples were positive for Acanthamoeba spp., and nucleotide sequencing indicated that 15 samples (88.23%) belonged to the T4 genotype and the rest belonged to the T5 genotype. A total of 39 studies reported genotyping of Acanthamoeba spp. from various geographical areas of Iran and revealed that T4 (35 studies), T5 (19 studies), T3 (11 studies), T11 (8 studies), and T2 (6 studies) genotypes were the most prevalent in Iran. The T4 genotype of Acanthamoeba is a prevalent free-living amoeba and widely distributed not only in Zahedan but also in other provinces of Iran. Phylogenetic analysis reveals that A. castellanii and A. griffini predominantly colocalize with the T4 genotype.
Collapse
Affiliation(s)
- Hadi Mirahmadi
- Infectious Disease and Tropical Medicine Research Center, Tuberculosis Resistance Institute, Zahedan University of Medical Sciences, Zahedan, IranandDepartment of Parasitology and Mycology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Maryam Mansouri Nia
- Infectious Disease and Tropical Medicine Research Center, Tuberculosis Resistance Institute, Zahedan University of Medical Sciences, Zahedan, IranandDepartment of Parasitology and Mycology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Adel Ebrahimzadeh
- Infectious Disease and Tropical Medicine Research Center, Tuberculosis Resistance Institute, Zahedan University of Medical Sciences, Zahedan, IranandDepartment of Parasitology and Mycology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ahmad Mehravaran
- Infectious Disease and Tropical Medicine Research Center, Tuberculosis Resistance Institute, Zahedan University of Medical Sciences, Zahedan, IranandDepartment of Parasitology and Mycology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Reza Shafiei
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran E-mail: ;
| | | | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161 Tehran, Iran
| | - Harlan R Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|