1
|
Zhang Y, Erhard AL, Plagemann T, Eter N, Heiduschka P. A modified protocol for isolation of retinal microglia from the pig. Exp Eye Res 2021; 207:108584. [PMID: 33910034 DOI: 10.1016/j.exer.2021.108584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 11/27/2022]
Abstract
Microglia are the resident immune cells in the retina. To investigate their properties and behaviour, a reliable and yielding procedure to culture them is necessary. We here describe a way of isolation of microglial cells from the porcine retina, as pig eyes are similar to human eyes in size, structure and vasculature, including similarities in proteins and pathways. Retina was isolated from fresh pig eyes, dissociated by a mixture of collagenase, hyaluronidase and DNAse, and passed through a cell strainer. After triple centrifugation with decreasing velocity and re-suspension, cells were seeded into poly-d-lysine coated culture flasks and cultured using DMEM and macrophage-colony stimulating factor (M-CSF). Number of cells increased gradually during the first 10-14 days, till they could be split and used for experiments. Identity of isolated cells as microglia was assessed by immunostaining against the microglia/macrophage markers Iba1, CD11b, CD68, CD45 and TMEM119. Phagocytic function of microglia could be demonstrated by phagocytosis of fluorescence beads and their response to lipopolysaccharide (LPS). As a conclusion, we developed a protocol for isolation and cultivation of pig retinal microglial cells that are suitable for research in the laboratory.
Collapse
Affiliation(s)
- Yahan Zhang
- University of Münster Medical School, Department of Ophthalmology, Münster, Germany
| | - Anna Lena Erhard
- University of Münster Medical School, Department of Ophthalmology, Münster, Germany
| | - Tanja Plagemann
- University of Münster Medical School, Department of Ophthalmology, Münster, Germany
| | - Nicole Eter
- University of Münster Medical School, Department of Ophthalmology, Münster, Germany
| | - Peter Heiduschka
- University of Münster Medical School, Department of Ophthalmology, Münster, Germany.
| |
Collapse
|
2
|
Schnichels S, Paquet-Durand F, Löscher M, Tsai T, Hurst J, Joachim SC, Klettner A. Retina in a dish: Cell cultures, retinal explants and animal models for common diseases of the retina. Prog Retin Eye Res 2020; 81:100880. [PMID: 32721458 DOI: 10.1016/j.preteyeres.2020.100880] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
For many retinal diseases, including age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR), the exact pathogenesis is still unclear. Moreover, the currently available therapeutic options are often unsatisfactory. Research designed to remedy this situation heavily relies on experimental animals. However, animal models often do not faithfully reproduce human disease and, currently, there is strong pressure from society to reduce animal research. Overall, this creates a need for improved disease models to understand pathologies and develop treatment options that, at the same time, require fewer or no experimental animals. Here, we review recent advances in the field of in vitro and ex vivo models for AMD, glaucoma, and DR. We highlight the difficulties associated with studies on complex diseases, in which both the initial trigger and the ensuing pathomechanisms are unclear, and then delineate which model systems are optimal for disease modelling. To this end, we present a variety of model systems, ranging from primary cell cultures, over organotypic cultures and whole eye cultures, to animal models. Specific advantages and disadvantages of such models are discussed, with a special focus on their relevance to putative in vivo disease mechanisms. In many cases, a replacement of in vivo research will mean that several different in vitro models are used in conjunction, for instance to analyze and validate causative molecular pathways. Finally, we argue that the analytical decomposition into appropriate cell and tissue model systems will allow making significant progress in our understanding of complex retinal diseases and may furthermore advance the treatment testing.
Collapse
Affiliation(s)
- Sven Schnichels
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany.
| | - François Paquet-Durand
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Germany
| | - Marina Löscher
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - José Hurst
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Germany
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Kiel, Germany
| |
Collapse
|
3
|
Morris DR, Bounds SE, Liu H, Ding WQ, Chen Y, Liu Y, Cai J. Exosomal MiRNA Transfer between Retinal Microglia and RPE. Int J Mol Sci 2020; 21:ijms21103541. [PMID: 32429541 PMCID: PMC7279010 DOI: 10.3390/ijms21103541] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
The retinal pigment epithelium (RPE), the outermost layer of the retina, provides essential support to both the neural retina and choroid. Additionally, the RPE is highly active in modulating functions of immune cells such as microglia, which migrate to the subretinal compartment during aging and age-related degeneration. Recently, studies have highlighted the important roles of microRNA (miRNA) in the coordination of general tissue maintenance as well as in chronic inflammatory conditions. In this study, we analyzed the miRNA profiles in extracellular vesicles (EVs) released by the RPE, and identified and validated miRNA species whose expression levels showed age-dependent changes in the EVs. Using co-culture of RPE and retinal microglia, we further demonstrated that miR-21 was transferred between the two types of cells, and the increased miR-21 in microglia influenced the expression of genes downstream of the p53 pathway. These findings suggest that exosome-mediated miRNA transfer is a signaling mechanism that contributes to the regulation of microglia function in the aging retina.
Collapse
Affiliation(s)
- Dorothea R. Morris
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.R.M.); (Y.C.)
| | - Sarah E. Bounds
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.E.B.); (H.L.)
| | - Huanhuan Liu
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.E.B.); (H.L.)
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Yan Chen
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.R.M.); (Y.C.)
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yin Liu
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Correspondence: (Y.L.); (J.C.); Tel.: +1-713-500-5632 (Y.L.); +1-405-271-2226 (J.C.)
| | - Jiyang Cai
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.R.M.); (Y.C.)
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.E.B.); (H.L.)
- Correspondence: (Y.L.); (J.C.); Tel.: +1-713-500-5632 (Y.L.); +1-405-271-2226 (J.C.)
| |
Collapse
|
4
|
Tsai T, Reinehr S, Maliha AM, Joachim SC. Immune Mediated Degeneration and Possible Protection in Glaucoma. Front Neurosci 2019; 13:931. [PMID: 31543759 PMCID: PMC6733056 DOI: 10.3389/fnins.2019.00931] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
The underlying pathomechanisms for glaucoma, one of the most common causes of blindness worldwide, are still not identified. In addition to increased intraocular pressure (IOP), oxidative stress, excitotoxicity, and immunological processes seem to play a role. Several pharmacological or molecular/genetic methods are currently investigated as treatment options for this disease. Altered autoantibody levels were detected in serum, aqueous humor, and tissue sections of glaucoma patients. To further analyze the role of the immune system, an IOP-independent, experimental autoimmune glaucoma (EAG) animal model was developed. In this model, immunization with ocular antigens leads to antibody depositions, misdirected T-cells, retinal ganglion cell death and degeneration of the optic nerve, similar to glaucomatous degeneration in patients. Moreover, an activation of the complement system and microglia alterations were identified in the EAG as well as in ocular hypertension models. The inhibition of these factors can alleviate degeneration in glaucoma models with and without high IOP. Currently, several neuroprotective approaches are tested in distinct models. It is necessary to have systems that cover underlying pathomechanisms, but also allow for the screening of new drugs. In vitro models are commonly used, including single cell lines, mixed-cultures, and even organoids. In ex vivo organ cultures, pathomechanisms as well as therapeutics can be investigated in the whole retina. Furthermore, animal models reveal insights in the in vivo situation. With all these models, several possible new drugs and therapy strategies were tested in the last years. For example, hypothermia treatment, neurotrophic factors or the blockage of excitotoxity. However, further studies are required to reveal the pressure independent pathomechanisms behind glaucoma. There is still an open issue whether immune mechanisms directly or indirectly trigger cell death pathways. Hence, it might be an imbalance between protective and destructive immune mechanisms. Moreover, identified therapy options have to be evaluated in more detail, since deeper insights could lead to better treatment options for glaucoma patients.
Collapse
Affiliation(s)
| | | | | | - Stephanie C. Joachim
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Aires ID, Boia R, Rodrigues-Neves AC, Madeira MH, Marques C, Ambrósio AF, Santiago AR. Blockade of microglial adenosine A 2A receptor suppresses elevated pressure-induced inflammation, oxidative stress, and cell death in retinal cells. Glia 2019; 67:896-914. [PMID: 30667095 PMCID: PMC6590475 DOI: 10.1002/glia.23579] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
Glaucoma is a retinal degenerative disease characterized by the loss of retinal ganglion cells and damage of the optic nerve. Recently, we demonstrated that antagonists of adenosine A2A receptor (A2A R) control retinal inflammation and afford protection to rat retinal cells in glaucoma models. However, the precise contribution of microglia to retinal injury was not addressed, as well as the effect of A2A R blockade directly in microglia. Here we show that blocking microglial A2A R prevents microglial cell response to elevated pressure and it is sufficient to protect retinal cells from elevated pressure-induced death. The A2A R antagonist SCH 58261 or the knockdown of A2A R expression with siRNA in microglial cells prevented the increase in microglia response to elevated hydrostatic pressure. Furthermore, in retinal neural cell cultures, the A2A R antagonist decreased microglia proliferation, as well as the expression and release of pro-inflammatory mediators. Microglia ablation prevented neural cell death triggered by elevated pressure. The A2A R blockade recapitulated the effects of microglia depletion, suggesting that blocking A2A R in microglia is able to control neurodegeneration in glaucoma-like conditions. Importantly, in human organotypic retinal cultures, A2A R blockade prevented the increase in reactive oxygen species and the morphological alterations in microglia triggered by elevated pressure. These findings place microglia as the main contributors for retinal cell death during elevated pressure and identify microglial A2A R as a therapeutic target to control retinal neuroinflammation and prevent neural apoptosis elicited by elevated pressure.
Collapse
Affiliation(s)
- Inês Dinis Aires
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Raquel Boia
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Ana Catarina Rodrigues-Neves
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Maria Helena Madeira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Carla Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Santiago
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| |
Collapse
|
6
|
Zhao Z, Yang M, Azar SR, Soong L, Weaver SC, Sun J, Chen Y, Rossi SL, Cai J. Viral Retinopathy in Experimental Models of Zika Infection. Invest Ophthalmol Vis Sci 2017; 58:4355–4365. [PMID: 28810265 PMCID: PMC5558627 DOI: 10.1167/iovs.17-22016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Purpose Emerging evidence has shown that both congenital and adult Zika virus (ZIKV) infection can cause eye diseases. The goals of the current study were to explore mechanisms and pathophysiology of ZIKV-induced eye defects. Methods Wild-type or A129 interferon type I receptor–deficient mice were infected by either FSS13025 or Mex1-7 strain of ZIKV. Retinal histopathology was measured at different time points after infection. The presence of viral RNA and protein in the retina was determined by in situ hybridization and immunofluorescence staining, respectively. Growth curves of ZIKV in permissive retinal cells were assessed in cultured retinal pigment epithelial (RPE) and Müller glial cells. Results ZIKV-infected mice developed a spectrum of ocular pathologies that affected multiple layers of the retina. A primary target of ZIKV in the eye was Müller glial cells, which displayed decreased neurotrophic function and increased expression of proinflammatory cytokines after infection. ZIKV also infected RPE; and both the RPE and Müller cells expressed viral entry receptors TYRO3 and AXL. Retinitis, focal retinal degeneration, and ganglion cell loss were observed after the clearance of viral particles. Conclusions Our data suggest that ZIKV can infect infant eyes with immature blood–retinal barrier and cause structural damages to the retina. The ocular findings in microcephalic infants may not be solely caused by ZIKV-induced impairment of neurodevelopment.
Collapse
Affiliation(s)
- Zhenyang Zhao
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Matthew Yang
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Sasha R Azar
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Lynn Soong
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Scott C Weaver
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States
| | - Jiaren Sun
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Yan Chen
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Shannan L Rossi
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States.,Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States
| | - Jiyang Cai
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| |
Collapse
|