1
|
Mielecki D, Godlewski J, Salinska E. Hyperbaric oxygen therapy for the treatment of hypoxic/ischemic injury upon perinatal asphyxia-are we there yet? Front Neurol 2024; 15:1386695. [PMID: 38685945 PMCID: PMC11057380 DOI: 10.3389/fneur.2024.1386695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Birth asphyxia and its main sequel, hypoxic-ischemic encephalopathy, are one of the leading causes of children's deaths worldwide and can potentially worsen the quality of life in subsequent years. Despite extensive research efforts, efficient therapy against the consequences of hypoxia-ischemia occurring in the perinatal period of life is still lacking. The use of hyperbaric oxygen, improving such vital consequences of birth asphyxia as lowered partial oxygen pressure in tissue, apoptosis of neuronal cells, and impaired angiogenesis, is a promising approach. This review focused on the selected aspects of mainly experimental hyperbaric oxygen therapy. The therapeutic window for the treatment of perinatal asphyxia is very narrow, but administering hyperbaric oxygen within those days improves outcomes. Several miRNAs (e.g., mir-107) mediate the therapeutic effect of hyperbaric oxygen by modulating the Wnt pathway, inhibiting apoptosis, increasing angiogenesis, or inducing neural stem cells. Combining hyperbaric oxygen therapy with drugs, such as memantine or ephedrine, produced promising results. A separate aspect is the use of preconditioning with hyperbaric oxygen. Overall, preliminary clinical trials with hyperbaric oxygen therapy used in perinatal asphyxia give auspicious results.
Collapse
Affiliation(s)
- Damian Mielecki
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Godlewski
- NeuroOncology Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Salinska
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
van Uden L, Tchirikov M. A Study of the Literature on Intrauterine Treatment Options for Chronic Placental Insufficiency with Intrauterine Growth Restriction Using Intrauterine Intravascular Amino Acid Supplementation. Life (Basel) 2023; 13:1232. [PMID: 37374014 DOI: 10.3390/life13061232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Intrauterine growth retardation (IUGR) is a very serious prenatal condition with 3-5% incidence of all pregnancies. It results from numerous factors, including chronic placental insufficiency. IUGR is associated with an increased risk of mortality and morbidity and is considered a major cause of fetal mortality. Currently, treatment options are significantly limited and often result in preterm delivery. Postpartum, IUGR infants also have higher risks of disease and neurological abnormalities. METHODS The PubMed database was searched using the keywords "IUGR", "fetal growth restriction", "treatment", "management" and "placental insufficiency" for the period between 1975 and 2023. These terms were also combined together. RESULTS There were 4160 papers, reviews and articles dealing with the topic of IUGR. In total, only 15 papers directly dealt with a prepartum therapy of IUGR; 10 of these were based on an animal model. Overall, the main focus was on maternal intravenous therapy with amino acids or intraamniotic infusion. Treatment methods have been tested since the 1970s to supplement the fetuses with nutrients lacking due to chronic placental insufficiency in various ways. In some studies, pregnant women were implanted with a subcutaneous intravascular perinatal port system, thus infusing the fetuses with a continuous amino acid solution. Prolongation of pregnancy was achieved, as well as improvement in fetal growth. However, insufficient benefit was observed in infusion with commercial amino acid solution in fetuses below 28 weeks' gestation. The authors attribute this primarily to the enormous variation in amino acid concentrations of the commercially available solutions compared with those observed in the plasma of preterm infants. These different concentrations are particularly important because differences in the fetal brain caused by metabolic changes have been demonstrated in the rabbit model. Several brain metabolites and amino acids were significantly decreased in IUGR brain tissue samples, resulting in abnormal neurodevelopment with decreased brain volume. DISCUSSION There are currently only a few studies and case reports with correspondingly low case numbers. Most of the studies refer to prenatal treatment by supplementation of amino acids and nutrients to prolong pregnancy and support fetal growth. However, there is no infusion solution that matches the amino acid concentrations found in fetal plasma. The commercially available solutions have mismatched amino acid concentrations and have not shown sufficient benefit in fetuses below 28 weeks' gestation. More treatment avenues need to be explored and existing ones improved to better treat multifactorial IUGR fetuses.
Collapse
Affiliation(s)
- Lisa van Uden
- University Clinic of Obstetrics and Prenatal Medicine, Center of Fetal Surgery, University Medical Center Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube Strasse 40, 06120 Halle (Saale), Germany
| | - Michael Tchirikov
- University Clinic of Obstetrics and Prenatal Medicine, Center of Fetal Surgery, University Medical Center Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube Strasse 40, 06120 Halle (Saale), Germany
| |
Collapse
|
3
|
Ho YW, Chung PY, Hou SK, Chang ML, Kang YN. Should We Use Hyperbaric Oxygen for Carbon Monoxide Poisoning Management? A Network Meta-Analysis of Randomized Controlled Trials. Healthcare (Basel) 2022; 10:1311. [PMID: 35885838 PMCID: PMC9318730 DOI: 10.3390/healthcare10071311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Carbon monoxide (CO) poisoning is a public health issue in numerous countries. Oxygen supplementation is the standard and initial management for acute CO poisoning. Normobaric oxygen (NBO) and hyperbaric oxygen (HBO) therapies for CO poisoning have been discussed for several decades. NBO, one-session HBO, two-session HBO, and three-session HBO have not been clearly compared, although there are some syntheses. Therefore, this study aimed to provide an overview of various HBO therapies for CO poisoning. We searched online databases for randomized controlled trials (RCTs) on this topic, and two authors individually extracted data on characteristics, mortality, headache recovery, general fatigue, memory impairment, and difficulty concentrating. Outcomes were pooled using network meta-analysis. We included eight RCTs (n = 1785) that met our eligibility criteria. Pooled estimates showed that HBO had no better outcomes than NBO. Moreover, two-session HBO seemed to have a higher general fatigue rate than NBO, and compared with one-session HBO therapy, it had a higher fatigue rate (risk ratio (RR): 1.29, 95% confidence interval (CI): 1.03-1.62), memory impairment rate (RR = 1.80, 95% CI: 1.01-3.19), and concentration impairment rate (RR = 1.85, 95% CI: 1.19-2.89). HBO may be ineffective for patients with CO poisoning. Therefore, clinicians should consider the available treatment options carefully before recommending HBO to patients.
Collapse
Affiliation(s)
- Yu-Wan Ho
- Department of Emergency Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-W.H.); (P.-Y.C.); (S.-K.H.)
| | - Ping-Yen Chung
- Department of Emergency Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-W.H.); (P.-Y.C.); (S.-K.H.)
| | - Sen-Kuang Hou
- Department of Emergency Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-W.H.); (P.-Y.C.); (S.-K.H.)
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ming-Long Chang
- Department of Emergency Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-W.H.); (P.-Y.C.); (S.-K.H.)
| | - Yi-No Kang
- Department of Emergency Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan; (Y.-W.H.); (P.-Y.C.); (S.-K.H.)
- Evidence-Based Medicine Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Cochrane Taiwan, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
4
|
Wang RY, Yang YR, Chang HC. The SDF1-CXCR4 Axis Is Involved in the Hyperbaric Oxygen Therapy-Mediated Neuronal Cells Migration in Transient Brain Ischemic Rats. Int J Mol Sci 2022; 23:ijms23031780. [PMID: 35163700 PMCID: PMC8836673 DOI: 10.3390/ijms23031780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/05/2023] Open
Abstract
Neurogenesis is a physiological response after cerebral ischemic injury to possibly repair the damaged neural network. Therefore, promoting neurogenesis is very important for functional recovery after cerebral ischemic injury. Our previous research indicated that hyperbaric oxygen therapy (HBOT) exerted neuroprotective effects, such as reducing cerebral infarction volume. The purposes of this study were to further explore the effects of HBOT on the neurogenesis and the expressions of cell migration factors, including the stromal cell-derived factor 1 (SDF1) and its target receptor, the CXC chemokine receptor 4 (CXCR4). Thirty-two Sprague–Dawley rats were divided into the control or HBO group after receiving transient middle cerebral artery occlusion (MCAO). HBOT began to intervene 24 h after MCAO under the pressure of 3 atmospheres for one hour per day for 21 days. Rats in the control group were placed in the same acrylic box without HBOT during the experiment. After the final intervention, half of the rats in each group were cardio-perfused with ice-cold saline followed by 4% paraformaldehyde under anesthesia. The brains were removed, dehydrated and cut into serial 20μm coronal sections for immunofluorescence staining to detect the markers of newborn cell (BrdU+), mature neuron cell (NeuN+), SDF1, and CXCR4. The affected motor cortex of the other half rats in each group was separated under anesthesia and used to detect the expressions of brain-derived neurotrophic factor (BDNF), SDF1, and CXCR4. Motor function was tested by a ladder-climbing test before and after the experiment. HBOT significantly enhanced neurogenesis in the penumbra area and promoted the expressions of SDF1 and CXCR4. The numbers of BrdU+/SDF1+, BrdU+/CXCR4+, and BrdU+/NeuN+ cells and BDNF concentrations in the penumbra were all significantly increased in the HBO group when compared with the control group. The motor functions were improved in both groups, but there was a significant difference between groups in the post-test. Our results indicated that HBOT for 21 days enhanced neurogenesis and promoted cell migration toward the penumbra area in transient brain ischemic rats. HBOT also increased BDNF expression, which might further promote the reconstructions of the impaired neural networks and restore motor function.
Collapse
Affiliation(s)
- Ray-Yau Wang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (R.-Y.W.); (Y.-R.Y.)
| | - Yea-Ru Yang
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (R.-Y.W.); (Y.-R.Y.)
| | - Heng-Chih Chang
- Department of Physical Therapy, Asia University, Taichung 413, Taiwan
- Correspondence: ; Tel.: +886-4-2332-3456 (ext. 48031)
| |
Collapse
|
5
|
He J, Jia M, Li W, Deng J, Ren J, Luo F, Bai J, Liu J. Toward improvements for enhancement the productivity and color value of Monascus pigments: a critical review with recent updates. Crit Rev Food Sci Nutr 2021; 62:7139-7153. [PMID: 34132617 DOI: 10.1080/10408398.2021.1935443] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monascus pigments are a kind of high-quality natural edible pigments fermented by Monascus filamentous fungi, which have been widely used in food, cosmetics, medicine, textiles, dyes and chemical industries as active functional ingredients. Moreover, Monascus pigments have a good application prospect because of a variety of biological functions such as antibacterial, antioxidation, anti-inflammatory, regulating cholesterol, and anti-cancer. However, the low productivity and color value of pigments restrict their development and application. In this review, we introduced the categories, structures, biosynthesis and functions of Monascus pigments, and summarized the current methods for improving the productivity and color value of pigments, including screening and mutagenesis of strains, optimization of fermentation conditions, immobilized fermentation, mixed fermentation, additives, gene knockout and overexpression technologies, which will help to develop the foundation for the industrial production of Monascus pigments.
Collapse
Affiliation(s)
- JinTao He
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - MingXi Jia
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - JiaLi Ren
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - FeiJun Luo
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jie Bai
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jun Liu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
6
|
Chang HC, Yang YR, Wang RY. Effects of repetitive hyperbaric oxygen therapy on neuroprotection in middle cerebral artery occlusion rats. Brain Res 2020; 1748:147097. [PMID: 32896522 DOI: 10.1016/j.brainres.2020.147097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Hyperbaric oxygen (HBO) has been suggested as a possible therapy for brain injury. However, the effects of HBO after transient brain ischemia are inconsistent and the underlying mechanisms are not fully known. The present study aimed to investigate the effects of repetitive HBO intervention in a transient middle cerebral artery occlusion (MCAO) animal model. Seventy-two Sprague-Dawley rats received MCAO and were randomly assigned to normal air control or HBO intervention groups. Each group was divided into 3 subgroups according to the intervention time period (7, 14, and 21 days). HBO was started 24 h post-MCAO for 1 h/day at 3.0 ATA with no-air breaks. After the final intervention, half of the rats in each subgroup were sacrificed and the right motor cortex was removed to examine levels of Akt phosphorylation and glutathione (GSH), as well as glutathione peroxidase (GPx) and reductase (GR) activity. The other half of the rats were used to examine infarct volume. At 24 h post-MCAO and the end of the final intervention, rats underwent tests to examine motor performance. We noted that 14- and 21-day HBO interventions significantly reduced infarct volume and increased Akt phosphorylation and GSH levels and GPx and GR activity. Motor performance was also significantly improved after 14- and 21-day interventions. No significant differences were observed between the controls and 7-day intervention groups. Repetitive HBO intervention starting 24 h post-MCAO and applied for at least 14 days, provided neuroprotective effects through modulating the cell survival pathway and antioxidative defense system.
Collapse
Affiliation(s)
- Heng-Chih Chang
- Department of Physical Therapy, Asia University, Taichung, Taiwan, ROC
| | - Yea-Ru Yang
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ray-Yau Wang
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan, ROC.
| |
Collapse
|
7
|
Wu X, Luo J, Liu H, Cui W, Guo W, Zhao L, Guo H, Bai H, Guo K, Feng D, Qu Y. Recombinant adiponectin peptide promotes neuronal survival after intracerebral haemorrhage by suppressing mitochondrial and ATF4-CHOP apoptosis pathways in diabetic mice via Smad3 signalling inhibition. Cell Prolif 2020; 53:e12759. [PMID: 31922310 PMCID: PMC7048203 DOI: 10.1111/cpr.12759] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/09/2019] [Accepted: 12/21/2019] [Indexed: 12/20/2022] Open
Abstract
Objective Low levels of adiponectin (APN), a biomarker of diabetes mellitus, have been implicated in the poor outcome of intracerebral haemorrhage (ICH). Herein, we aimed to demonstrate the neuroprotective effects of a blood‐brain barrier‐permeable APN peptide (APNp) on ICH injury in diabetic mice and explore the underlying mechanisms. Materials and methods Recombinant APNp was administrated intraperitoneally to mice with collagenase‐induced ICH. Neurological deficits, brain water content and neural apoptosis were assessed. Western blotting, immunofluorescence staining, quantitative RT‐PCR and transmission electron microscopy were used to determine the signalling pathways affected by APNp. Results Adiponectin peptide significantly alleviated neural apoptosis, neurological deficits and brain oedema following ICH in diabetic mice. Mechanistically, APNp promoted the restoration of peroxisome proliferator‐activated receptor gamma coactivator (PGC)‐1α related mitochondrial function and suppressed activating transcription factor 4 (ATF4)‐CCAAT‐enhancer‐binding protein homologous protein (CHOP)‐induced neural apoptosis. Furthermore, Smad3 signalling was found to play a regulatory role in this process by transcriptionally regulating the expression of PGC‐1α and ATF4. APNp significantly suppressed the elevated phosphorylation and nuclear translocation of Smad3 after ICH in diabetic mice, while the protective effects of APNp on mitochondrial and ATF4‐CHOP apoptosis pathways were counteracted when Smad3 was activated by exogenous transforming growth factor (TGF)‐β1 treatment. Conclusions Our study provided the first evidence that APNp promoted neural survival following ICH injury in the diabetic setting and revealed a novel mechanism by which APNp suppressed mitochondrial and ATF4‐CHOP apoptosis pathways in a Smad3 dependent manner.
Collapse
Affiliation(s)
- Xun Wu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianing Luo
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Haixiao Liu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenxing Cui
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Guo
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lei Zhao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hao Guo
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hao Bai
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kang Guo
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
LIU C, SUN E, MENG W, SUN G. Protective effect of crocetin from Crocus sativus L. on myocardial ischemia-reperfusion injury in rats. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.28918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Chen C, Yang Y, Yao Y. HBO Promotes the Differentiation of Neural Stem Cells via Interactions Between the Wnt3/β-Catenin and BMP2 Signaling Pathways. Cell Transplant 2019; 28:1686-1699. [PMID: 31694396 PMCID: PMC6923559 DOI: 10.1177/0963689719883578] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hyperbaric oxygen (HBO) therapy may promote neurological recovery from hypoxic-ischemic
encephalopathy (HIE). However, the therapeutic effects of HBO and its associated
mechanisms remain unknown. The canonical Wnt/β-catenin signaling pathways and bone
morphogenetic protein (BMP) play important roles in mammalian nervous system development.
The present study examined whether HBO stimulates the differentiation of neural stem cells
(NSCs) and its effect on Wnt3/β-catenin and BMP2 signaling pathways. We showed HBO
treatment (2 ATA, 60 min) promoted differentiation of NSCs into neurons and
oligodendrocytes in vitro. In addition, rat hypoxic-ischemic brain damage (HIBD) tissue
extracts also promoted the differentiation of NSCs into neurons and oligodendrocytes, with
the advantage of reducing the number of astrocytes. These effects were most pronounced
when these two were combined together. In addition, the expression of Wnt3a, BMP2, and
β-catenin nuclear proteins were increased after HBO treatment. However, blockade of
Wnt/β-catenin or BMP signaling inhibited NSC differentiation and reduced the expression of
Wnt3a, BMP2, and β-catenin nuclear proteins. In conclusion, HBO promotes differentiation
of NSCs into neurons and oligodendrocytes and reduced the number of astrocytes in vitro
possibly through regulation of Wnt3/β-catenin and BMP2 signaling pathways. HBO may serve
as a potential therapeutic strategy for treating HIE.
Collapse
Affiliation(s)
- Chongfeng Chen
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou City, Guangdong, China
| | - Yujia Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha City, Hunan, P.R. China
| | - Yue Yao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha City, Hunan, P.R. China
| |
Collapse
|
10
|
Tchirikov M, Saling E, Bapayeva G, Bucher M, Thews O, Seliger G. Hyperbaric oxygenation and glucose/amino acids substitution in human severe placental insufficiency. Physiol Rep 2019. [PMID: 29536649 PMCID: PMC5849598 DOI: 10.14814/phy2.13589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the first case, the AA and glucose were infused through a perinatal port system into the umbilical vein at 30 weeks' gestation due to severe IUGR. The patient received daily hyperbaric oxygenation (HBO, 100% O2) with 1.4 atmospheres absolute for 50 min for 7 days. At 31+4 weeks' gestation, the patient gave birth spontaneously to a newborn weighing 1378 g, pH 7.33, APGAR score 4/6/intubation. In follow‐up examinations at 5 years of age, the boy was doing well without any neurological disturbance or developmental delay. In the second case, the patient presented at 25/5 weeks' gestation suffering from severe IUGR received HBO and maternal AA infusions. The cardiotocography was monitored continuously during HBO treatment. The short‐time variations improved during HBO from 2.9 to 9 msec. The patient developed pathologic CTG and uterine contractions 1 day later and gave birth to a hypotrophic newborn weighing 420 g. After initial adequate stabilization, the extremely preterm newborn unfortunately died 6 days later. Fetal nutrition combined with HBO is technically possible and may allow the prolongation of the pregnancy. Fetal‐specific amino‐acid composition would facilitate the treatment options of IUGR fetuses and extremely preterm newborn.
Collapse
Affiliation(s)
- Michael Tchirikov
- Center of Fetal Surgery, University Clinic of Obstetrics and Fetal Medicine, University Medical Center Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Erich Saling
- Saling Institute of Perinatal Medicine, Berlin, Germany
| | - Gauri Bapayeva
- National Research Center for Mother and Child Health, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Michael Bucher
- Center of HBO, University Clinic of Anesthesiology, University Medical Center Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Oliver Thews
- Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Gregor Seliger
- Center of Fetal Surgery, University Clinic of Obstetrics and Fetal Medicine, University Medical Center Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
11
|
Shams Z, Khalatbary AR, Ahmadvand H, Zare Z, Kian K. Neuroprotective effects of hyperbaric oxygen (HBO) therapy on neuronal death induced by sciatic nerve transection in rat. BMC Neurol 2017; 17:220. [PMID: 29246132 PMCID: PMC5732534 DOI: 10.1186/s12883-017-1004-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/06/2017] [Indexed: 12/28/2022] Open
Abstract
Background Recent studies shows that hyperbaric oxygen (HBO) therapy exerts some protective effects against neural injuries. The purpose of this study was to determine the neuroprotective effects of HBO following sciatic nerve transection (SNT). Methods Rats were randomly divided into five groups (n = 14 per group): Sham-operated (SH) group, SH + HBO group, SNT group, and SNT + pre- and SNT + post-HBO groups (100% oxygen at 2.0 atm absolute, 60 min/day for five consecutive days beginning on 1 day before and immediately after nerve transaction, respectively). Spinal cord segments of the sciatic nerve and related dorsal root ganglions (DRGs) were removed 4 weeks after nerve transection for biochemical assessment of malodialdehyde (MDA) levels in spinal cord, biochemical assessment of superoxide dismutase (SOD) and catalse (CAT) activities in spinal cord, immunohistochemistry of caspase-3, cyclooxigenase-2 (COX-2), S100beta (S100ß), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) in spinal cord and DRG. Results The results revealed that MDA levels were significantly decreased in the SNT + pre-HBO group, while SOD and CAT activities were significantly increased in SNT + pre- and SNT + post-HBO treated rats. Attenuated caspase-3 and COX-2 expression, and TUNEL reaction could be significantly detected in the HBO-treated rats after nerve transection. Also, HBO significantly increased S100ß expression. Conclusions Based on these results, we can conclude that pre- and post-HBO therapy had neuroprotective effects against sciatic nerve transection-induced degeneration.
Collapse
Affiliation(s)
- Zahra Shams
- Molecular and Cell Biology Research Center, Department of Anatomy, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Reza Khalatbary
- Molecular and Cell Biology Research Center, Department of Anatomy, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Hassan Ahmadvand
- Department of Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.,Razi Herbal Researches Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zohreh Zare
- Molecular and Cell Biology Research Center, Department of Anatomy, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kosar Kian
- Molecular and Cell Biology Research Center, Department of Anatomy, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
12
|
Li X, Guo H, Zhao L, Wang B, Liu H, Yue L, Bai H, Jiang H, Gao L, Feng D, Qu Y. Adiponectin attenuates NADPH oxidase-mediated oxidative stress and neuronal damage induced by cerebral ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3265-3276. [DOI: 10.1016/j.bbadis.2017.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/12/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
|
13
|
Ramos E, Patiño P, Reiter RJ, Gil-Martín E, Marco-Contelles J, Parada E, de Los Rios C, Romero A, Egea J. Ischemic brain injury: New insights on the protective role of melatonin. Free Radic Biol Med 2017; 104:32-53. [PMID: 28065781 DOI: 10.1016/j.freeradbiomed.2017.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
Stroke represents one of the most common causes of brain's vulnerability for many millions of people worldwide. The plethora of physiopathological events associated with brain ischemia are regulate through multiple signaling pathways leading to the activation of oxidative stress process, Ca2+ dyshomeostasis, mitochondrial dysfunction, proinflammatory mediators, excitotoxicity and/or programmed neuronal cell death. Understanding this cascade of molecular events is mandatory in order to develop new therapeutic strategies for stroke. In this review article, we have highlighted the pleiotropic effects of melatonin to counteract the multiple processes of the ischemic cascade. Additionally, experimental evidence supports its actions to ameliorate ischemic long-term behavioural and neuronal deficits, preserving the functional integrity of the blood-brain barrier, inducing neurogenesis and cell proliferation through receptor-dependent mechanism, as well as improving synaptic transmission. Consequently, the synthesis of melatonin derivatives designed as new multitarget-directed products has focused a great interest in this area. This latter has been reinforced by the low cost of melatonin and its reduced toxicity. Furthermore, its spectrum of usages seems to be wide and with the potential for improving human health. Nevertheless, the molecular and cellular mechanisms underlying melatonin´s actions need to be further exploration and accordingly, new clinical studies should be conducted in human patients with ischemic brain pathologies.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paloma Patiño
- Paediatric Unit, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology. University of Texas Health Science Center at San Antonio, USA
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | - José Marco-Contelles
- Medicinal Chemistry Laboratory, Institute of General Organic Chemistry (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Esther Parada
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Cristobal de Los Rios
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Alejandro Romero
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Egea
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|