1
|
Zhang XJ, Han XW, Jiang YH, Wang YL, He XL, Liu DH, Huang J, Liu HH, Ye TC, Li SJ, Li ZR, Dong XM, Wu HY, Long WJ, Ni SH, Lu L, Yang ZQ. Impact of inflammation and anti-inflammatory modalities on diabetic cardiomyopathy healing: From fundamental research to therapy. Int Immunopharmacol 2023; 123:110747. [PMID: 37586299 DOI: 10.1016/j.intimp.2023.110747] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a prevalent cardiovascular complication of diabetes mellitus, characterized by high morbidity and mortality rates worldwide. However, treatment options for DCM remain limited. For decades, a substantial body of evidence has suggested that the inflammatory response plays a pivotal role in the development and progression of DCM. Notably, DCM is closely associated with alterations in inflammatory cells, exerting direct effects on major resident cells such as cardiomyocytes, vascular endothelial cells, and fibroblasts. These cellular changes subsequently contribute to the development of DCM. This article comprehensively analyzes cellular, animal, and human studies to summarize the latest insights into the impact of inflammation on DCM. Furthermore, the potential therapeutic effects of current anti-inflammatory drugs in the management of DCM are also taken into consideration. The ultimate goal of this work is to consolidate the existing literature on the inflammatory processes underlying DCM, providing clinicians with the necessary knowledge and tools to adopt a more efficient and evidence-based approach to managing this condition.
Collapse
Affiliation(s)
- Xiao-Jiao Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Wei Han
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Yan-Hui Jiang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Ya-Le Wang
- Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Pudong New District, Shanghai 201203, China; Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, 16 Xian tong Road, Luo hu District, Shenzhen, Guangdong 518004, China
| | - Xing-Ling He
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Dong-Hua Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jie Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Hao-Hui Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Tao-Chun Ye
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Si-Jing Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zi-Ru Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Ming Dong
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Hong-Yan Wu
- Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Pudong New District, Shanghai 201203, China; Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, 16 Xian tong Road, Luo hu District, Shenzhen, Guangdong 518004, China.
| | - Wen-Jie Long
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Shi-Hao Ni
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Zhong-Qi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| |
Collapse
|
2
|
Pang B, Jiang YR, Xu JY, Shao DX, Hao LY. Apelin/ELABELA-APJ system in cardiac hypertrophy: Regulatory mechanisms and therapeutic potential. Eur J Pharmacol 2023; 949:175727. [PMID: 37062502 DOI: 10.1016/j.ejphar.2023.175727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/18/2023]
Abstract
Heart failure is one of the most significant public health problems faced by millions of medical researchers worldwide. And pathological cardiac hypertrophy is considered one of the possible factors of increasing the risk of heart failure. Here, we introduce apelin/ELABELA-APJ system as a novel therapeutic target for cardiac hypertrophy, bringing about new directions in clinical treatment. Apelin has been proven to regulate cardiac hypertrophy through various pathways. And an increasing number of studies on ELABELA, the newly discovered endogenous ligand, suggest it can alleviate cardiac hypertrophy through mechanisms similar or different to apelin. In this review, we elaborate on the role that apelin/ELABELA-APJ system plays in cardiac hypertrophy and the intricate mechanisms that apelin/ELABELA-APJ affect cardiac hypertrophy. We also illuminate and make comparisons of the newly designed peptides and small molecules as agonists and antagonists for APJ, updating the breakthroughs in this field.
Collapse
Affiliation(s)
- Bo Pang
- China Medical University-The Queen's University of Belfast Joint College, Queen's University Belfast, Belfast Northern Ireland, BT9 7BL, United Kingdom.
| | - Yin-Ru Jiang
- China Medical University-The Queen's University of Belfast Joint College, Queen's University Belfast, Belfast Northern Ireland, BT9 7BL, United Kingdom.
| | - Jia-Yao Xu
- China Medical University-The Queen's University of Belfast Joint College, Queen's University Belfast, Belfast Northern Ireland, BT9 7BL, United Kingdom.
| | - Dong-Xue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Li-Ying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
4
|
Yan X, Wu L, Gao M, Yang P, Yang J, Deng Y. Omentin inhibits the resistin‑induced hypertrophy of H9c2 cardiomyoblasts by inhibiting the TLR4/MyD88/NF‑κB signaling pathway. Exp Ther Med 2022; 23:292. [PMID: 35340867 DOI: 10.3892/etm.2022.11222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/24/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Xiaoliang Yan
- Department of Cardiothoracic Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Lin Wu
- Department of Cardiology, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang 317500, P.R. China
| | - Min Gao
- Department of Cardiovascular Surgery, The Affiliated Cardiovascular Hospital of Shanxi Medical University and Shanxi Cardiovascular Hospital (Institute), Taiyuan, Shanxi 030024, P.R. China
| | - Pengjie Yang
- Department of Cardiovascular Surgery, The Affiliated Cardiovascular Hospital of Shanxi Medical University and Shanxi Cardiovascular Hospital (Institute), Taiyuan, Shanxi 030024, P.R. China
| | - Jinjing Yang
- Department of Cardiology and Central Laboratory, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, P.R. China
| | - Yongzhi Deng
- Department of Cardiovascular Surgery, The Affiliated Cardiovascular Hospital of Shanxi Medical University and Shanxi Cardiovascular Hospital (Institute), Taiyuan, Shanxi 030024, P.R. China
| |
Collapse
|
6
|
Abstract
FGF21 (fibroblast growth factor 21) is a regulator of metabolism and performs an important role in glucose and lipid metabolism and the maintenance of energy balance. FGF21 is principally expressed in the liver, but it can also be found in the pancreas, skeletal muscle, and adipose tissue. It is known that levels of serum FGF21 are significantly elevated in obese, insulin-resistant patients, and those with metabolic syndrome. Elevated levels of FGF21 in serum during the early stages of various metabolic diseases are considered a compensatory response by the organism. Therefore, FGF21 is considered a hormone in response to stress and an early diagnostic marker of disease. Diabetic cardiomyopathy is a special type of cardiac complication, characterized as a chronic myocardial disorder caused by diabetes. The pathological process includes increased oxidative stress, energy metabolism in myocardial cells, an inflammatory response, and myocardial cell apoptosis. A growing body of evidence suggests that FGF21 has the potential to be an effective drug for the treatment of diabetic cardiomyopathy. Here, we review recent progress on the characteristics of FGF21 in its protective role, especially in pathological processes such as suppressing apoptosis in the myocardium, reducing inflammation in cardiomyocytes, reducing oxidative stress, and promoting fatty acid oxidation. In addition, we explore the possibility that diabetic cardiomyopathy can be delayed through the application of FGF21, providing possible therapeutic targets of the disease.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Luo Yang
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Xiongfeng Xu
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Fengjuan Tang
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Peng Yi
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Bo Qiu
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Yarong Hao
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China.
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China.
- Division of Metabolic Syndrome, Department of Geriatrics, Renming Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
7
|
Bonito B, Silva AP, Rato F, Santos N, Neves PL. Resistin as a predictor of cardiovascular hospital admissions and renal deterioration in diabetic patients with chronic kidney disease. J Diabetes Complications 2019; 33:107422. [PMID: 31484628 DOI: 10.1016/j.jdiacomp.2019.107422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/31/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND High resistin levels have been associated with cardiovascular disease (CVD). Cardiovascular hospitalizations are common, especially in diabetic and renal impaired patients. The purpose of this study is to determine the role of serum resistin as a predictor of cardiovascular hospitalizations in type 2 diabetic patients with mild to moderate chronic kidney disease (CKD). METHODS We conducted a prospective, observational study. 78 diabetic patients with mild to moderate CKD and no previous CVD were included. The population was divided in two groups: G-1 with cardiovascular related admission (n = 13) and G-2 without cardiovascular related admission (n = 65). A Student's t-test was conducted to determine correlations between laboratory findings and hospitalization. We used logistic regression to assess predictors of cardiovascular events requiring hospitalization and Cox regression to identify predictors of end-stage renal disease (ESRD). RESULTS eGFR, albumin, HbA1c, phosphorous, PTH, IR, CRP, resistin and active vitamin D, were related to cardiovascular admissions. In a multivariate regression model, resistin (OR = 2.074, p = 0.047) was an independent predictor of cardiovascular hospitalization. Cox regression showed that resistin (HR = 1.931, p = 0.031) and UACr (HR = 1.151, p = 0.048) were also independent predictors of renal disease progression. CONCLUSION Resistin demonstrated to be valuable in predicting hospital admissions and progression to ESRD.
Collapse
Affiliation(s)
- Bruno Bonito
- Nephrology Department, Centro Hospitalar Universitário do Algarve, Faro, Portugal.
| | - Ana Paula Silva
- Nephrology Department, Centro Hospitalar Universitário do Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - Fátima Rato
- Clinical Pathology, Centro Hospitalar Universitário do Algarve, Faro, Portugal
| | - Nélio Santos
- Clinical Pathology, Centro Hospitalar Universitário do Algarve, Faro, Portugal
| | - Pedro Leão Neves
- Nephrology Department, Centro Hospitalar Universitário do Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| |
Collapse
|
8
|
Abstract
Apelin and apela (ELABELA/ELA/Toddler) are two peptide ligands for a class A G-protein-coupled receptor named the apelin receptor (AR/APJ/APLNR). Ligand-AR interactions have been implicated in regulation of the adipoinsular axis, cardiovascular system, and central nervous system alongside pathological processes. Each ligand may be processed into a variety of bioactive isoforms endogenously, with apelin ranging from 13 to 55 amino acids and apela from 11 to 32, typically being cleaved C-terminal to dibasic proprotein convertase cleavage sites. The C-terminal region of the respective precursor protein is retained and is responsible for receptor binding and subsequent activation. Interestingly, both apelin and apela exhibit isoform-dependent variability in potency and efficacy under various physiological and pathological conditions, but most studies focus on a single isoform. Biophysical behavior and structural properties of apelin and apela isoforms show strong correlations with functional studies, with key motifs now well determined for apelin. Unlike its ligands, the AR has been relatively difficult to characterize by biophysical techniques, with most characterization to date being focused on effects of mutagenesis. This situation may improve following a recently reported AR crystal structure, but there are still barriers to overcome in terms of comprehensive biophysical study. In this review, we summarize the three components of the apelinergic system in terms of structure-function correlation, with a particular focus on isoform-dependent properties, underlining the potential for regulation of the system through multiple endogenous ligands and isoforms, isoform-dependent pharmacological properties, and biological membrane-mediated receptor interaction. © 2018 American Physiological Society. Compr Physiol 8:407-450, 2018.
Collapse
Affiliation(s)
- Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Calem Kenward
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|