1
|
Terzi A, Ngo KJ, Mourrain P. Phylogenetic conservation of the interdependent homeostatic relationship of sleep regulation and redox metabolism. J Comp Physiol B 2024; 194:241-252. [PMID: 38324048 PMCID: PMC11233307 DOI: 10.1007/s00360-023-01530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/08/2024]
Abstract
Sleep is an essential and evolutionarily conserved process that affects many biological functions that are also strongly regulated by cellular metabolism. The interdependence between sleep homeostasis and redox metabolism, in particular, is such that sleep deprivation causes redox metabolic imbalances in the form of over-production of ROS. Likewise (and vice versa), accumulation of ROS leads to greater sleep pressure. Thus, it is theorized that one of the functions of sleep is to act as the brain's "antioxidant" at night by clearing oxidation built up from daily stress of the active day phase. In this review, we will highlight evidence linking sleep homeostasis and regulation to redox metabolism by discussing (1) the bipartite role that sleep-wake neuropeptides and hormones have in redox metabolism through comparing cross-species cellular and molecular mechanisms, (2) the evolutionarily metabolic changes that accompanied the development of sleep loss in cavefish, and finally, (3) some of the challenges of uncovering the cellular mechanism underpinning how ROS accumulation builds sleep pressure and cellularly, how this pressure is cleared.
Collapse
Affiliation(s)
- Aslihan Terzi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Keri J Ngo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- INSERM 1024, Ecole Normale Supérieure, Paris, France.
| |
Collapse
|
2
|
Lisek M, Mackiewicz J, Sobolczyk M, Ferenc B, Guo F, Zylinska L, Boczek T. Early Developmental PMCA2b Expression Protects From Ketamine-Induced Apoptosis and GABA Impairments in Differentiating Hippocampal Progenitor Cells. Front Cell Neurosci 2022; 16:890827. [PMID: 35677757 PMCID: PMC9167922 DOI: 10.3389/fncel.2022.890827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
PMCA2 is not expressed until the late embryonic state when the control of subtle Ca2+ fluxes becomes important for neuronal specialization. During this period, immature neurons are especially vulnerable to degenerative insults induced by the N-methyl-D-aspartate (NMDA) receptor blocker, ketamine. As H19-7 hippocampal progenitor cells isolated from E17 do not express the PMCA2 isoform, they constitute a valuable model for studying its role in neuronal development. In this study, we demonstrated that heterologous expression of PMCA2b enhanced the differentiation of H19-7 cells and protected from ketamine-induced death. PMCA2b did not affect resting [Ca2+]c in the presence or absence of ketamine and had no effect on the rate of Ca2+ clearance following membrane depolarization in the presence of the drug. The upregulation of endogenous PMCA1 demonstrated in response to PMCA2b expression as well as ketamine-induced PMCA4 depletion were indifferent to the rate of Ca2+ clearance in the presence of ketamine. Yet, co-expression of PMCA4b and PMCA2b was able to partially restore Ca2+ extrusion diminished by ketamine. The profiling of NMDA receptor expression showed upregulation of the NMDAR1 subunit in PMCA2b-expressing cells and increased co-immunoprecipitation of both proteins following ketamine treatment. Further microarray screening demonstrated a significant influence of PMCA2b on GABA signaling in differentiating progenitor cells, manifested by the unique regulation of several genes key to the GABAergic transmission. The overall activity of glutamate decarboxylase remained unchanged, but Ca2+-induced GABA release was inhibited in the presence of ketamine. Interestingly, PMCA2b expression was able to reverse this effect. The mechanism of GABA secretion normalization in the presence of ketamine may involve PMCA2b-mediated inhibition of GABA transaminase, thus shifting GABA utilization from energetic purposes to neurosecretion. In this study, we show for the first time that developmentally controlled PMCA expression may dictate the pattern of differentiation of hippocampal progenitor cells. Moreover, the appearance of PMCA2 early in development has long-standing consequences for GABA metabolism with yet an unpredictable influence on GABAergic neurotransmission during later stages of brain maturation. In contrast, the presence of PMCA2b seems to be protective for differentiating progenitor cells from ketamine-induced apoptotic death.
Collapse
Affiliation(s)
- Malwina Lisek
- Department of Molecular Neurochemistry, Medical University of Lodz, Łódz, Poland
| | - Joanna Mackiewicz
- Department of Molecular Neurochemistry, Medical University of Lodz, Łódz, Poland
| | - Marta Sobolczyk
- Department of Molecular Neurochemistry, Medical University of Lodz, Łódz, Poland
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Medical University of Lodz, Łódz, Poland
| | - Feng Guo
- Department of Pharmaceutical Toxicology, China Medical University, Shenyang, China
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University of Lodz, Łódz, Poland
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Łódz, Poland
- *Correspondence: Tomasz Boczek
| |
Collapse
|
3
|
Metabonomics Study on Naotaifang Extract Alleviating Neuronal Apoptosis after Cerebral Ischemia-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2112433. [PMID: 35321499 PMCID: PMC8938065 DOI: 10.1155/2022/2112433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/03/2021] [Accepted: 02/12/2022] [Indexed: 01/07/2023]
Abstract
Naotaifang extract (NTE) is a clinically effective traditional Chinese medicine compound for cerebral ischemia-reperfusion injury. Although NTE can achieve neuroprotective function through different mechanisms, the pharmacodynamic substances of NTE corresponding to these mechanisms have rarely been reported. Alleviating or inhibiting neuronal apoptosis is an important way to achieve neuroprotection. Accordingly, this study has evaluated the effects of NTE on alleviating neuronal apoptosis after cerebral ischemia-reperfusion injury from two levels of cells and tissues. Meanwhile, the serum pharmacochemistry of NTE was analyzed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) with the guidance of Chinmedomics. The results included three aspects: (1) NTE could significantly alleviate neuronal apoptosis caused by in vitro cellular models and in vivo animal models; (2) a total of 21 serum differential metabolites was discovered, including adenosine, inosine, ferulic acid, calycosin, salidroside, 6-gingerol, 2-methoxycinnamaldehyde, and so on; (3) the metabolic pathway regulated by NTE was mainly purine metabolism. From these results, it can be concluded that alleviating neuronal apoptosis by NTE after cerebral ischemia-reperfusion injury is one of the important mechanisms to achieve neuroprotection. The pharmacodynamic substances of NTE for alleviating neuronal apoptosis on the one hand are related to components directly absorbed into blood, such as ferulic acid, calycosin, salidroside, 6-gingerol, and 2-methoxycinnamaldehyde and on the other hand are also closely linked to its indirect regulation of purine metabolism in the body to produce adenosine and inosine. Therefore, our research not only identified the main pharmacodynamic substances of NTE that alleviated neuronal apoptosis but also provided a methodological reference for studying other neuroprotective effects of NTE.
Collapse
|
4
|
Colella M, Panfoli I, Doglio M, Cassanello M, Bruschi M, Angelis LCD, Candiano G, Parodi A, Malova M, Petretto A, Morana G, Tortora D, Severino M, Maghnie M, Buonocore G, Rossi A, Baud O, Ramenghi LA. Adenosine Blood Level: A Biomarker of White Matter Damage in Very Low Birth Weight Infants. Curr Pediatr Rev 2022; 18:153-163. [PMID: 35086453 DOI: 10.2174/1573396318666220127155943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Very low birth weight infants are at risk of developing periventricular white matter lesions. We previously reported high blood adenosine levels in premature infants and infants with low birth weight. We asked whether blood adenosine levels could be related to the vulnerability of the maturing white matter to develop lesions. The present study aims at finding a biomarker for the early detection of brain white matter lesions that can profoundly influence the neurodevelopmental outcome, whose pathophysiology is still unclear. METHODS Dried blood spots were prospectively collected for the newborn screening program and adenosine concentration measurements. Fifty-six newborns who tested four times for blood adenosine concentration (at days 3, 15, 30, and 40 post-birth) were included in the program. All infants underwent brain MRI at term equivalent age. Neurodevelopmental outcomes were studied with Griffiths Mental Development Scales (GMDS) at 12 ± 2 months corrected age. RESULTS Blood adenosine concentration increased over time from a median of 0.75 μM at Day 3 to 1.46 μM at Day 40. Adenosine blood concentration >1.58 μM at Day 15 was significantly associated with brain white matter lesions at MRI (OR (95 % CI) of 50.0 (3.6-688.3), p-value < 0.001). A moderate negative correlation between adenosine at 15 days of life and GMDS at 12 ± 2 months corrected age was found. CONCLUSION These findings suggest a potential role for blood adenosine concentration as a biomarker of creberal white matter lesions in very low birth weight infants.
Collapse
Affiliation(s)
- Marina Colella
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Pediatrics, The University of Genova, Genoa, Italy
| | - Isabella Panfoli
- Dipartimento di Farmacia-DIFAR, Universitàdi Genova, Genoa, Italy
| | - Matteo Doglio
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Pediatrics, The University of Genova, Genoa, Italy
| | - Michela Cassanello
- LABSIEM-Laboratory for the Study of Inborn Errors of Metabolism, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Laura C De Angelis
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessandro Parodi
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mariya Malova
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Petretto
- Laboratory of Mass Spectrometry-Core Facilities, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giovanni Morana
- Department of Pediatric Neuroradiology,IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Domenico Tortora
- Department of Pediatric Neuroradiology,IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mariasavina Severino
- Department of Pediatric Neuroradiology,IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mohamad Maghnie
- LABSIEM-Laboratory for the Study of Inborn Errors of Metabolism, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, The University of Siena, Siena, Italy
| | - Andrea Rossi
- Department of Pediatric Neuroradiology,IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Oliver Baud
- Robert Debré hospital, Paris Diderot University, Paris, France
| | - Luca A Ramenghi
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
5
|
MMP9 mediates acute hyperglycemia-induced human cardiac stem cell death by upregulating apoptosis and pyroptosis in vitro. Cell Death Dis 2020; 11:186. [PMID: 32170070 PMCID: PMC7070071 DOI: 10.1038/s41419-020-2367-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
Abstract
Providing a conducive microenvironment is critical to increase survival of transplanted stem cells in regenerative therapy. Hyperglycemia promotes stem cell death impairing cardiac regeneration in the diabetic heart. Understanding the molecular mechanisms of high glucose-induced stem cell death is important for improving cardiac regeneration in diabetic patients. Matrix metalloproteinase-9 (MMP9), a collagenase, is upregulated in the diabetic heart, and ablation of MMP9 decreases infarct size in the non-diabetic myocardial infarction heart. In the present study, we aim to investigate whether MMP9 is a mediator of hyperglycemia-induced cell death in human cardiac stem cells (hCSCs) in vitro. We created MMP9−/− hCSCs to test the hypothesis that MMP9 mediates hyperglycemia-induced oxidative stress and cell death via apoptosis and pyroptosis in hCSCs, which is attenuated by the lack of MMP9. We found that hyperglycemia induced oxidative stress and increased cell death by promoting pyroptosis and apoptosis in hCSCs, which was prevented in MMP9−/− hCSCs. These findings revealed a novel intracellular role of MMP9 in mediating stem cell death and provide a platform to assess whether MMP9 inhibition could improve hCSCs survival in stem cell therapy at least in acute hyperglycemic microenvironment.
Collapse
|