1
|
Anodic TiO 2 Nanotubes: Tailoring Osteoinduction via Drug Delivery. NANOMATERIALS 2021; 11:nano11092359. [PMID: 34578675 PMCID: PMC8466263 DOI: 10.3390/nano11092359] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
TiO2 nanostructures and more specifically nanotubes have gained significant attention in biomedical applications, due to their controlled nanoscale topography in the sub-100 nm range, high surface area, chemical resistance, and biocompatibility. Here we review the crucial aspects related to morphology and properties of TiO2 nanotubes obtained by electrochemical anodization of titanium for the biomedical field. Following the discussion of TiO2 nanotopographical characterization, the advantages of anodic TiO2 nanotubes will be introduced, such as their high surface area controlled by the morphological parameters (diameter and length), which provides better adsorption/linkage of bioactive molecules. We further discuss the key interactions with bone-related cells including osteoblast and stem cells in in vitro cell culture conditions, thus evaluating the cell response on various nanotubular structures. In addition, the synergistic effects of electrical stimulation on cells for enhancing bone formation combining with the nanoscale environmental cues from nanotopography will be further discussed. The present review also overviews the current state of drug delivery applications using TiO2 nanotubes for increased osseointegration and discusses the advantages, drawbacks, and prospects of drug delivery applications via these anodic TiO2 nanotubes.
Collapse
|
2
|
Effect of TiO 2 Nanotube Pore Diameter on Human Mesenchymal Stem Cells and Human Osteoblasts. NANOMATERIALS 2020; 10:nano10112117. [PMID: 33113757 PMCID: PMC7692029 DOI: 10.3390/nano10112117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
The pore diameter of uniformly structured nanotubes can significantly change the behaviour of cells. Recent studies demonstrated that the activation of integrins is affected not by only the surface chemistry between the cell-material interfaces, but also by the features of surface nanotopography, including nanotube diameter. While research has been carried out in this area, there has yet to be a single systemic study to date that succinctly compares the response of both human stem cells and osteoblasts to a range of TiO2 nanotube pore diameters using controlled experiments in a single laboratory. In this paper, we investigate the influence of surface nanotopography on cellular behaviour and osseointegrative properties through a systemic study involving human mesenchymal stem cells (hMSCs) and human osteoblasts (HOBs) on TiO2 nanotubes of 20 nm, 50 nm and 100 nm pore diameters using in-vitro assessments. This detailed study demonstrates the interrelationship between cellular behaviour and nanotopography, revealing that a 20 nm nanotube pore diameter is preferred by hMSCs for the induction of osteogenic differentiation, while 50 nm nanotubular structures are favourable by HOBs for osteoblastic maturation.
Collapse
|
3
|
Hydroxyapatite and β-TCP modified PMMA-TiO 2 and PMMA-ZrO 2 coatings for bioactive corrosion protection of Ti6Al4V implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111149. [PMID: 32806280 DOI: 10.1016/j.msec.2020.111149] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/02/2020] [Accepted: 05/31/2020] [Indexed: 12/23/2022]
Abstract
Organic-inorganic hybrid coatings deposited on different types of metallic alloys have shown outstanding anticorrosive performance. The incorporation of osteoconductive additives such as hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) into organic-inorganic hybrid coatings is promising to improve the osseointegration and corrosion resistance of Ti6Al4V alloys, which are the most widely used metallic orthopedic and dental implant materials today. Therefore, this study evaluated the capability of poly(methyl methacrylate) (PMMA)-TiO2 and PMMA-ZrO2 hybrid coatings modified with HA and β-TCP to act as bioactive and corrosion protection coatings for Ti6Al4V alloys. In terms of cell growth and mineralization, osteoblast viability, Ca+2 deposition and alkaline phosphatase assays revealed a significant improvement for the HA and β-TCP modified coatings, compared to the bare alloy. This can be explained by an increase in nanoscale roughness and associated higher surface free energy, which lead to enhanced protein adsorption to promote osteoblast attachment and functions on the coatings. The effect of HA and β-TCP additives on the anticorrosive efficiency was studied by electrochemical impedance spectroscopy (EIS) in a simulated body fluid (SBF) solution. The coatings presented a low-frequency impedance modulus of up to 430 GΩ cm2, 5 decades higher than the bare Ti6Al4V alloy. These findings provide clear evidence of the beneficial role of HA and β-TCP modified hybrid coatings, improving both the biocompatibility and corrosion resistance of the Ti6Al4V alloy.
Collapse
|
4
|
Comparison of the osteoblastic activity of low elastic modulus Ti-24Nb-4Zr-8Sn alloy and pure titanium modified by physical and chemical methods. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:111018. [PMID: 32487417 DOI: 10.1016/j.msec.2020.111018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/13/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Ti-24Nb-4Zr-8Sn (Ti2448) alloy is a novel low elastic modulus β-titanium alloy without toxic elements. It also has the advantage of high strength, so it has potential application prospects for implantation. To develop its osteogenic effects, it can be modified by electrochemical, and physical processes. The main research aim of this study was to explore the bioactivity of Ti2448 alloy modified by sandblasted, large-grit, acid-etched (SLA), micro-arc oxidation (MAO) and anodic oxidation (AO), and to determine which of the three surface modifications is the best way for developing the osteogenesis of bone marrow mesenchymal stem cells (BMMSCs). In vitro studies, the cytoskeleton, focal adhesion and proliferation of BMMSCs showed that both pure titanium and Ti2448 alloy have good biocompatibility. The osteogenic differentiation of BMMSCs with the Ti2448 alloy were examined by detecting alkaline phosphatase (ALP), mineralization nodules and osteogenic proteins and were better than that with pure titanium. These results showed that the Ti2448 alloy treated by SLA has a better effect on osteogenesis than pure titanium, and AO is the best way of three surface treatments to improve osteogenesis in this study.
Collapse
|
5
|
Lin HI, Kuo YM, Hu CC, Lee MH, Chen LH, Li CT, Wong TH, Yen TJ. Functional Studies of Anodic Oxidized β-Ti-28Nb-11Ta-8Zr Alloy for Mechanical, In-vitro and Antibacterial Capability. Sci Rep 2018; 8:14253. [PMID: 30250121 PMCID: PMC6155372 DOI: 10.1038/s41598-018-32462-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/03/2018] [Indexed: 01/06/2023] Open
Abstract
We developed an osseocompatible β-type Ti-28Nb-11Ta-8Zr (TNTZ) alloy that displays the excellent elastic modulus, cellular response, corrosion resistance and antibacterial capability demanded for bone-mimetic materials. The TNTZ alloy exhibited an elastic modulus of 49 GPa, which approximates that of human bones and prevent stress shielding effects. A further anodic oxidation and subsequent post-annealing modification formed a crystalline nanoporous TNTZ oxide layer (NPTNTZO(c)) on the alloy surface, potentially promoting interlocking with the extracellular matrix of bone cells and cell proliferation. Osteoblast viability tests also verified that NPTNTZO(c) enhanced cell growth more significantly than that of flat TNTZ. In addition, potentiodynamic polarization tests in Hanks' balanced salt solution (HBSS) revealed that both TNTZ and NPTNTZO(c) exhibited better corrosion resistance than commercial pure titanium. Finally, NPTNTZO(c) reinforced with silver nanoparticles (NPTNTZO
Collapse
Affiliation(s)
- Hsin-I Lin
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Ming Kuo
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chun-Chih Hu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Mu-Huan Lee
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ling-Hsiang Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chung-Tien Li
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Tze-Hong Wong
- Department of Orthopedics, National Taiwan University Hospital Hsinchu Branch, Hsinchu, 30059, Taiwan
| | - Ta-Jen Yen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan. .,Center for Nanotechnology, Materials Science, and Microsystems, National Tsing Hua University, Hsinchu, 30013, Taiwan. .,High Entropy Materials Center, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
6
|
Ganguly D, Johnson CDL, Gottipati MK, Rende D, Borca-Tasciuc DA, Gilbert RJ. Specific Nanoporous Geometries on Anodized Alumina Surfaces Influence Astrocyte Adhesion and Glial Fibrillary Acidic Protein Immunoreactivity Levels. ACS Biomater Sci Eng 2017; 4:128-141. [DOI: 10.1021/acsbiomaterials.7b00760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- D. Ganguly
- Department
of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - C. D. L. Johnson
- Department
of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - M. K. Gottipati
- Department
of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department
of Neuroscience and the Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio 43210, United States
| | - D. Rende
- Center
for Materials, Devices and Integrated Systems, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - D.-A. Borca-Tasciuc
- Department
of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Rensselaer
Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - R. J. Gilbert
- Department
of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Rensselaer
Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
7
|
Sethu SN, Namashivayam S, Devendran S, Nagarajan S, Tsai WB, Narashiman S, Ramachandran M, Ambigapathi M. Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering. Int J Biol Macromol 2017; 98:67-74. [DOI: 10.1016/j.ijbiomac.2017.01.089] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 01/24/2023]
|
8
|
Osteoblast cellular activity on low elastic modulus Ti–24Nb–4Zr–8Sn alloy. Dent Mater 2017; 33:152-165. [DOI: 10.1016/j.dental.2016.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 01/10/2023]
|
9
|
Nune KC, Misra RDK, Li SJ, Hao YL, Yang R. Cellular response of osteoblasts to low modulus Ti-24Nb-4Zr-8Sn alloy mesh structure. J Biomed Mater Res A 2016; 105:859-870. [DOI: 10.1002/jbm.a.35963] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/08/2016] [Indexed: 01/24/2023]
Affiliation(s)
- K. C. Nune
- Biomaterials and Biomedical Engineering Research Laboratory, Department of Metallurgical, Materials and Biomedical Engineering; The University of Texas at; El Paso, 500 W. University Avenue El Paso Texas 79968
| | - R. D. K. Misra
- Biomaterials and Biomedical Engineering Research Laboratory, Department of Metallurgical, Materials and Biomedical Engineering; The University of Texas at; El Paso, 500 W. University Avenue El Paso Texas 79968
| | - S. J. Li
- Shenyang National Laboratory for Materials Science; Institute of Metal Research, Chinese Academy of Sciences; Shenyang 110016 China
| | - Y. L. Hao
- Shenyang National Laboratory for Materials Science; Institute of Metal Research, Chinese Academy of Sciences; Shenyang 110016 China
| | - R. Yang
- Shenyang National Laboratory for Materials Science; Institute of Metal Research, Chinese Academy of Sciences; Shenyang 110016 China
| |
Collapse
|