1
|
Tsai CY, Hsu JSJ, Chen PL, Wu CC. Implementing next-generation sequencing for diagnosis and management of hereditary hearing impairment: a comprehensive review. Expert Rev Mol Diagn 2024; 24:753-765. [PMID: 39194060 DOI: 10.1080/14737159.2024.2396866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Sensorineural hearing impairment (SNHI), a common childhood disorder with heterogeneous genetic causes, can lead to delayed language development and psychosocial problems. Next-generation sequencing (NGS) offers high-throughput screening and high-sensitivity detection of genetic etiologies of SNHI, enabling clinicians to make informed medical decisions, provide tailored treatments, and improve prognostic outcomes. AREAS COVERED This review covers the diverse etiologies of HHI and the utility of different NGS modalities (targeted sequencing and whole exome/genome sequencing), and includes HHI-related studies on newborn screening, genetic counseling, prognostic prediction, and personalized treatment. Challenges such as the trade-off between cost and diagnostic yield, detection of structural variants, and exploration of the non-coding genome are also highlighted. EXPERT OPINION In the current landscape of NGS-based diagnostics for HHI, there are both challenges (e.g. detection of structural variants and non-coding genome variants) and opportunities (e.g. the emergence of medical artificial intelligence tools). The authors advocate the use of technological advances such as long-read sequencing for structural variant detection, multi-omics analysis for non-coding variant exploration, and medical artificial intelligence for pathogenicity assessment and outcome prediction. By integrating these innovations into clinical practice, precision medicine in the diagnosis and management of HHI can be further improved.
Collapse
Affiliation(s)
- Cheng-Yu Tsai
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jacob Shu-Jui Hsu
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| |
Collapse
|
2
|
Chen HK, Hsieh YW, Hsu HY, Liu TY, Zhang YT, Lin CD, Tsai FJ. Increased risk of hearing loss associated with MT-RNR1 gene mutations: a real-world investigation among Han Taiwanese Population. BMC Med Genomics 2024; 17:155. [PMID: 38840095 PMCID: PMC11155076 DOI: 10.1186/s12920-024-01921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Previous studies have implicated inherited mutations in mitochondrial DNA (mtDNA) in sensorineural hearing loss (SNHL). However, the definitive association between mitochondrial 12S rRNA (MT-RNR1) variants and hearing loss in the population has not been well established, particularly in Asia. The objective of this retrospective cohort study was to assess the association between MT-RNR1 variants and the risk of SNHL in patients in Taiwan. METHODS The cohort included 306,068 participants from Taiwan between January 2003 and December 2020. Participants were classified based on genetic variants, particularly mitochondrial mutations (rs267606618, rs267606619, rs267606617). MT-RNR1 variant cases were matched 1:10 with non-mutant patients by age, gender, and visit year, excluding those with pre-existing hearing loss. The primary endpoint was SNHL, identified using specific ICD-TM codes with a 90% positive predictive value. Medication exposure history was determined via self-report or electronic medical records in the hospital. Cox proportional hazard regression models were used to assess the association between MT-RNR1 variants and hearing loss, adjusting for various covariates. Kaplan-Meier survival curves and log-rank tests compared hearing loss incidence between groups. RESULTS The mean age of the mtDNA variants group is 32.4 years, with a standard deviation of 19.2 years. The incidence density of hearing loss for the mutation group was 36.42 per 10,000 person-years (95% Confidence Interval [CI], 27.21-47.73), which was higher than the 23.77per 10,000 person-years (95% CI, 21.32-26.42) in the wild-type group (p = 0.0036). Additionally, diabetes mellitus was associated with an increased risk of developing SNHL in individuals with MT-RNR1 variants (adjusted hazard ratio = 1.76 [95% CI, 1.00-3.09], p < 0.05). CONCLUSION This study highlights the increased risk of hearing loss in patients carrying MT-RNR1 variants, particularly those with diabetes mellitus. Future research that integrates genetic and clinical data is crucial for developing more precise interventions to monitor and treat hearing loss in this vulnerable population.
Collapse
Affiliation(s)
- Hou-Kuang Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yow-Wen Hsieh
- Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Hsing-Yu Hsu
- Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Yuan Liu
- Million-person precision medicine initiative, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Ting Zhang
- Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Der Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, China Medical University Hospital, Taichung, Taiwan.
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
- Division of Pediatric Genetics, Children's Hospital of China Medical University, Taichung, Taiwan.
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan.
| |
Collapse
|
3
|
Hu H, Zhou P, Wu J, Lei W, Wang Y, Yang Y, Liu H. Genetic testing involving 100 common mutations for antenatal diagnosis of hereditary hearing loss in Chongqing, China. Medicine (Baltimore) 2021; 100:e25647. [PMID: 33907123 PMCID: PMC8084083 DOI: 10.1097/md.0000000000025647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT To understand the possible carrier status of genes associated with hereditary hearing loss (HHL) in the general population among local residents and to give genetic counseling for pregnant women.A total of 3541 subjects were recruited. We used multiplex PCR technology combined with next-generation sequencing technology to detect 100 hotspot mutations in 18 common deafness-related genes. The homozygous mutation screening results were verified using Sanger sequencing.Of the 3541 participants, 37 alleles of 8 deafness genes were detected. A total of 145 (4.09%) were found to be GJB2 gene mutation carriers, and the hotspot mutation was c.235delC (1.54%). Twenty three (0.65%) were found to be GJB3 gene mutation carriers. A total of 132 (3.37%) were found to be SLC26A4 gene mutation carriers, and the hotspot mutation was c.919-2A > G (0.49%). Forty four (1.24%) were found to be mitochondrial DNA mutation carriers. Sanger sequencing results verified that 2 cases were homozygous for the c.235delC mutation and that 1 case was homozygous for the c.754T > C mutation.Genetic testing for pregnant women and their partners allows early identification of the molecular etiology of hearing loss (HL). On the one hand, it could give genetic counseling for pregnant women, such as early diagnosis of delayed deafness and drug-susceptible deafness. On the other hand, it could be used to assess hearing conditions during pregnancy, leading to prevention and timely intervention for newborns.
Collapse
Affiliation(s)
- Hua Hu
- Second Affiliated Hospital, Army Military Medical University, Chongqing
| | - Peng Zhou
- Second Affiliated Hospital, Army Military Medical University, Chongqing
| | - Jiayan Wu
- Second Affiliated Hospital, Army Military Medical University, Chongqing
| | - Wei Lei
- CapitalBio Genomics Co., Ltd., Dongguan, China
| | - Yang Wang
- CapitalBio Genomics Co., Ltd., Dongguan, China
| | - Ying Yang
- Second Affiliated Hospital, Army Military Medical University, Chongqing
| | | |
Collapse
|
4
|
Wang M, Li Q, Deng A, Zhu X, Yang J. Identification of a novel mutation in CRYM in a Chinese family with hearing loss using whole-exome sequencing. Exp Ther Med 2020; 20:1447-1454. [PMID: 32742378 PMCID: PMC7388290 DOI: 10.3892/etm.2020.8890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 05/07/2020] [Indexed: 12/26/2022] Open
Abstract
Previous studies have identified ~50 genes that contribute to non-syndromic autosomal dominant sensorineural deafness (DFNA). However, in numerous families with hearing loss, the specific gene mutation remains to be identified. In the present study, the clinical characteristics and gene mutations were analyzed in a Chinese pedigree with hereditary hearing loss. The clinical characteristics of the family members were assessed and a detailed audiology function examination was performed. Whole-exome sequencing (WES) was performed to identify the gene mutation responsible for the hearing loss. Sanger sequencing was used to verify the candidate mutation detected in the family. The family consisted of 31 members, seven of whom were diagnosed with sensorineural deafness of varying degrees. No mutation was identified by the general deafness gene chip. However, a novel heterozygous mutation in exon 3 (c.152C>T; Pro51Leu) of the gene crystallin µ (CRYM) was identified by WES. This result was further verified by Sanger sequencing. Co-segregation of genotypes and phenotypes suggested that this novel mutation was instrumental for the hearing loss/DFNA. In conclusion, the present study identified a novel pathogenic mutation, NM_001888.5(CRYM): c.152C>T(Pro51Leu), associated with DFNA. This mutation has not been reported previously and further functional studies are warranted.
Collapse
Affiliation(s)
- Min Wang
- Department of Otorhinolaryngology and Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Qian Li
- Department of Otorhinolaryngology and Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Anchun Deng
- Department of Otorhinolaryngology and Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Xianbai Zhu
- Department of Otorhinolaryngology and Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Junjie Yang
- Department of Otorhinolaryngology and Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| |
Collapse
|
5
|
Wu CC, Tsai CY, Lin YH, Chen PY, Lin PH, Cheng YF, Wu CM, Lin YH, Lee CY, Erdenechuluun J, Liu TC, Chen PL, Hsu CJ. Genetic Epidemiology and Clinical Features of Hereditary Hearing Impairment in the Taiwanese Population. Genes (Basel) 2019; 10:genes10100772. [PMID: 31581539 PMCID: PMC6826657 DOI: 10.3390/genes10100772] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
Hereditary hearing impairment (HHI) is a common but heterogeneous clinical entity caused by mutations in a plethora of deafness genes. Research over the past few decades has shown that the genetic epidemiology of HHI varies significantly across populations. In this study, we used different genetic examination strategies to address the genetic causes of HHI in a large Taiwanese cohort composed of >5000 hearing-impaired families. We also analyzed the clinical features associated with specific genetic mutations. Our results demonstrated that next-generation sequencing-based examination strategies could achieve genetic diagnosis in approximately half of the families. Common deafness-associated genes in the Taiwanese patients assessed, in the order of prevalence, included GJB2, SLC26A4, OTOF, MYO15A, and MTRNR1, which were similar to those found in other populations. However, the Taiwanese patients had some unique mutations in these genes. These findings may have important clinical implications for refining molecular diagnostics, facilitating genetic counseling, and enabling precision medicine for the management of HHI.
Collapse
Affiliation(s)
- Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan.
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan.
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 10055, Taiwan.
| | - Yi-Hsin Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan.
| | - Pey-Yu Chen
- Department of Otolaryngology, Mackay Memorial Hospital, Taipei 10449, Taiwan.
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital Yunlin Branch, Yunlin 64041, Taiwan.
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Che-Ming Wu
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou 33302, Taiwan.
| | - Yin-Hung Lin
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 10055, Taiwan.
| | - Chee-Yee Lee
- Department of Otolaryngology, Buddhist Tzuchi General Hospital, Taichung Branch, Taichung 42743, Taiwan.
| | - Jargalkhuu Erdenechuluun
- Department of Otolaryngology, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia.
- The EMJJ Otolaryngology Hospital, Ulaanbaatar 14210, Mongolia.
- Department of Otolaryngology, National Center for Maternal and Child Health, Ulaanbaatar 16060, Mongolia.
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan.
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 10055, Taiwan.
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan.
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan.
- Department of Otolaryngology, Buddhist Tzuchi General Hospital, Taichung Branch, Taichung 42743, Taiwan.
| |
Collapse
|
6
|
Fu Y, Zha S, Lü N, Xu H, Zhang X, Shi W, Zha J. Carrier frequencies of hearing loss variants in newborns of China: A meta-analysis. J Evid Based Med 2019; 12:40-50. [PMID: 29968368 DOI: 10.1111/jebm.12305] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/28/2018] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The objective of this study was to review the carrier frequencies of hearing loss gene variants, such as GJB2, SLC26A4, and MT-RNR1 in newborns of China. DESIGN PubMed, Embase, BioCentral, CNKI, WanFang, and VIP databases were used for searching relevant literature studies published during the period of January 2007 and January 2016. Meta-analysis was performed by using the R software. The estimated rate and its 95% confidence intervals (CI) of the relevant indexes in newborns were collected and calculated using a fixed-effects model or a random-effects model when appropriate. RESULTS In total, 35 of 958 published literature studies in Chinese and English were selected. The overall results showed that in newborns of China, the carrier frequencies of GJB2 variants (235 delC, 299 delAT) were 1.64% (95% CI 1.52% to 1.77%) and 0.33% (95% CI 0.19% to 0.51%); SLC26A4 variants (IVS7-2 A > G, 2168 A > G) were 1.02% (95% CI 0.91% to 1.15%) and 0.14% (95% CI 0.06% to 0.25%); MT-RNR1 variants (1555 A > G, 1449 C > T) were 0.20% (95% CI 0.17% to 0.23%) and 0.03% (95% CI 0.02% to 0.05%). CONCLUSIONS There are high carrier frequencies of GJB2 variants among newborns in China, followed by SLC26A4 and MT-RNR1 variants. In order to achieve "early detection, early diagnosis and early treatment" and reduce the incidence of hereditary hearing loss in offspring, a comprehensive combination of neonatal hearing screening and deafness gene detection should be recommended and implemented in China.
Collapse
Affiliation(s)
- Yali Fu
- Jiangsu Family Planning Research Institute, Nanjing, P. R. China
| | - Shuwei Zha
- Jiangsu Family Planning Research Institute, Nanjing, P. R. China
| | - Nianqing Lü
- Jiangsu Family Planning Research Institute, Nanjing, P. R. China
| | - Haoqin Xu
- Jiangsu Family Planning Research Institute, Nanjing, P. R. China
| | - Xuening Zhang
- Jiangsu Family Planning Research Institute, Nanjing, P. R. China
| | - Wenhui Shi
- Jiangsu Family Planning Research Institute, Nanjing, P. R. China
| | - Ji Zha
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
7
|
Yang T, Guo L, Wang L, Yu X. Diagnosis, Intervention, and Prevention of Genetic Hearing Loss. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1130:73-92. [PMID: 30915702 DOI: 10.1007/978-981-13-6123-4_5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is estimated that at least 50% of congenital or childhood hearing loss is attributable to genetic causes. In non-syndromic hearing loss, which accounts for 70% of genetic hearing loss, approximately 80% of cases are autosomal recessive, 15% autosomal dominant, and 1-2% mitochondrial or X-linked. In addition, 30% of genetic hearing loss is syndromic. The genetic causes of hearing loss are highly heterogeneous. So far, more than 140 deafness-related genes have been discovered. Studies on those genes tremendously increased our understanding of the inner ear functions at the molecular level. It also offers important information for the patients and allows personalized and accurate genetic counseling. In many cases, genetic diagnosis of hearing loss can help to avoid unnecessary and costly clinical testing, offer prognostic information, and guide future medical management. On the other hand, a variety of gene therapeutic approaches have been developed aiming to relieve or converse the hearing loss due to genetic causes. Prevention of genetic hearing loss is feasible through prepregnancy and prenatal genetic diagnosis and counseling.
Collapse
Affiliation(s)
- Tao Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Luo Guo
- Key Laboratory of Hearing Medicine of NHFPC, ENT Institute and Otorhinolaryngology Department, Shanghai Engineering Research Centre of Cochlear Implant, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Longhao Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xiaoyu Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
8
|
Li H, Qiu J, Zhu J, Huang Y. Gene mutation analysis and genetic counseling for patients with non-syndromic hearing loss in Linyi region. Exp Ther Med 2018; 17:413-417. [PMID: 30651814 PMCID: PMC6307381 DOI: 10.3892/etm.2018.6927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/25/2018] [Indexed: 11/06/2022] Open
Abstract
Through gene mutation analysis of patients with non-syndromic hearing loss (NSHL) correct genetic counseling for patients with NSHL and their family members were provided. A total of 116 patients suffering from NSHL were selected, and Sanger sequencing was applied to analyze 31 mutation sites in four deafness genes [gap junction β-2 (GJB2), solute carrier family 26, member 4 (SLC26A4), GJB3 and mitochondria 12S ribosomal ribonucleic acid (12SrRNA)]. Based on detection results, for the families with reproductive needs, amniotic fluid was extracted from pregnant women during proper gestational weeks to identify fetal genotypes and predict hearing state. Among 116 patients with NSHL, 51 patients carrying definite pathogenic mutation were found, including 35 patients with GJB2 mutations, 14 patients with SLC26A4 gene mutations and 2 patients with mitochondrial deoxyribonucleic acid 12SrRNA (mtDNA 12SrRNA) mutations. No GJB3 gene mutation site was detected. In addition, prenatal diagnosis to 17 pregnant women who had given birth to babies with deafness was performed, and results suggested that genotypes of 6 fetuses were consistent with those of probands, genotypes of 8 fetuses were consistent with those of their parents, and no mutation was found in the other 3 fetuses. Gene mutation analysis of patients with NSHL can identify the etiology and provide appropriate genetic counseling and birth guiding for patients with NSHL and their family members. In addition, prenatal diagnosis to the families who plan to give birth again can avoid the natality of fetuses with hearing loss.
Collapse
Affiliation(s)
- Huafeng Li
- Genetics Laboratory, Women and Children's Health Care Hospital of Linyi, Linyi, Shandong 276014, P.R. China
| | - Jigang Qiu
- Genetics Laboratory, Women and Children's Health Care Hospital of Linyi, Linyi, Shandong 276014, P.R. China
| | - Jinping Zhu
- Genetics Laboratory, Women and Children's Health Care Hospital of Linyi, Linyi, Shandong 276014, P.R. China
| | - Yuqiang Huang
- Genetics Laboratory, Women and Children's Health Care Hospital of Linyi, Linyi, Shandong 276014, P.R. China
| |
Collapse
|
9
|
Li S, Peng Q, Liao S, Li W, Ma Q, Lu X. A reverse dot blot assay for the screening of twenty mutations in four genes associated with NSHL in a Chinese population. PLoS One 2017; 12:e0177196. [PMID: 28505178 PMCID: PMC5432070 DOI: 10.1371/journal.pone.0177196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/23/2017] [Indexed: 11/18/2022] Open
Abstract
Background Congenital deafness is one of the most distressing disorders affecting humanity and exhibits a high incidence worldwide. Most cases of congenital deafness in the Chinese population are caused by defects in a limited number of genes. A convenient and reliable method for detecting common deafness-related gene mutations in the Chinese population is required. Methods We developed a PCR-reverse dot blot (RDB) assay for screening 20 hotspot mutations of GJB2, GJB3, SLC26A4, and MT-RNR1, which are common non-syndromic hearing loss (NSHL)–associated genes in the Chinese population. The PCR-RDB assay consists of multiplex PCR amplifications of 10 fragments in the target sequence of the four above-mentioned genes in wild-type and mutant genomic DNA samples followed by hybridization to a test strip containing allele-specific oligonucleotide probes. We applied our method to a set of 225 neonates with deafness gene mutations and 30 normal neonates. Results The test was validated through direct sequencing in a blinded study with 100% concordance. Conclusions The results demonstrated that our reverse dot blot assay is a reliable and effective genetic screening method for identifying carriers and individuals with NSHL among the Chinese population.
Collapse
Affiliation(s)
- Siping Li
- Department of Laboratory, Dongguan Children's Hospital, Dongguan, Guangdong, China
| | - Qi Peng
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Shengyun Liao
- Shenzhen Yilifang Biotech CO., LTD., Shenzhen, China
| | - Wenrui Li
- Department of Laboratory, Dongguan Children's Hospital, Dongguan, Guangdong, China
| | - Qiang Ma
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
| | - Xiaomei Lu
- Department of Laboratory, Dongguan Children's Hospital, Dongguan, Guangdong, China
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China
- * E-mail:
| |
Collapse
|
10
|
Wu CC, Tsai CH, Hung CC, Lin YH, Lin YH, Huang FL, Tsao PN, Su YN, Lee YL, Hsieh WS, Hsu CJ. Newborn genetic screening for hearing impairment: a population-based longitudinal study. Genet Med 2016; 19:6-12. [DOI: 10.1038/gim.2016.66] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/12/2016] [Indexed: 12/11/2022] Open
|
11
|
Ibekwe TS, Bhimrao SK, Westerberg BD, Kozak FK. A meta-analysis and systematic review of the prevalence of mitochondrially encoded 12S RNA in the general population: Is there a role for screening neonates requiring aminoglycosides? Afr J Paediatr Surg 2015; 12:105-13. [PMID: 26168747 PMCID: PMC4955414 DOI: 10.4103/0189-6725.160342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND This was a meta-analysis and systematic review to determine the global prevalence of the mitochondrially encoded 12S RNA (MT-RNR1) genetic mutation in order to assess the need for neonatal screening prior to aminoglycoside therapy. MATERIALS AND METHODS A comprehensive search of MEDLINE, EMBASE, Ovid, Database of Abstracts of Reviews of Effect, Cochrane Library, Clinical Evidence and Cochrane Central Register of Trials was performed including cross-referencing independently by 2 assessors. Selections were restricted to human studies in English. Meta-analysis was done with MetaXL 2013. RESULTS Forty-five papers out of 295 met the criteria. Pooled prevalence in the general population for MT-RNR1 gene mutations (A1555G, C1494T, A7445G) was 2% (1-4%) at 99%. CONCLUSION Routine screening for MT-RNR1 mutations in the general population prior to treatment with aminoglycosides appear desirable but poorly supported by the weak level of evidence available in the literature. Routine screening in high-risk (Chinese and Spanish) populations appear justified.
Collapse
Affiliation(s)
- Titus S Ibekwe
- Department of ENT, University of Abuja Teaching Hospital and College of Health Sciences, University of Abuja, Abuja, Nigeria
| | | | | | | |
Collapse
|
12
|
Fassad MR, Desouky LM, Asal S, Abdalla EM. Screening for the mitochondrial A1555G mutation among Egyptian patients with non-syndromic, sensorineural hearing loss. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2014; 5:200-204. [PMID: 25755848 PMCID: PMC4348701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 12/30/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND & AIM Hearing loss is the most frequent form of neurosensory deficit in humans. Although the majority of hereditary hearing loss is due to nuclear gene mutations, it has become clear the significant contribution of mitochondrial genes. The first mitochondrial mutation shown to cause non-syndromic hearing loss in humans was the A1555G mutation in the small ribosomal RNA gene (12S rRNA). It has been detected in hundreds of families of different ethnic backgrounds, making it one of the prevalent genetic causes of hearing loss currently identified. However, there are major differences between ethnic groups regarding the frequency of this mutation. Few studies have been made in Arab countries, especially in Egypt. Here we report the prevalence of the mitochondrial mutation A1555G among patients with non-syndromic hearing loss (NSHL) and in healthy individuals with normal hearing in the Egyptian population. SUBJECTS & METHODS The study was conducted on 97 patients with SNHL and 300 unrelated healthy Egyptian individuals, with normal hearing, as normal control subjects. Polymerase chain reaction followed by restriction enzyme digestion was used to screen the DNA samples of all subjects for the A1555G mutation. RESULTS Participants included 97 cases with SNHL, 46 males and 51 females. Their ages ranged from 1 month to 65 years with the mean age 6.2 years (SD ± 8.2). Paternal consanguinity was reported in 46% (35/76) of the studied families. The A1555G mutation was found in one of the 97 patients (1.3%), while it has not been detected in the 300 control samples. CONCLUSION Our findings indicate that, even in absence of exposure to aminoglycosides, the mitochondrial A1555G mutation is one of the potential causes of non-syndromic SNHL in the Egyptian population.
Collapse
Affiliation(s)
- Mahmoud R Fassad
- Department of Human Genetics, Medical Research Institute, Alexandria UniversityEgypt
| | - Lubna M Desouky
- Department of Human Genetics, Medical Research Institute, Alexandria UniversityEgypt
| | - Samir Asal
- Department of Audiology, Alexandria Faculty of MedicineEgypt
| | - Ebtesam M Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria UniversityEgypt
| |
Collapse
|