1
|
Wu Y, Chen L, Mao X, Ru Z, Yu L, Chen M, Wang J, Chen J, Pang Q. Closure of Complex Wounds by a Simple Skin Stretching System Associated With Vacuum Sealing Drainage-Clinical Outcome of 34 Patients. INT J LOW EXTR WOUND 2021:15347346211032046. [PMID: 34279133 DOI: 10.1177/15347346211032046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Management of complex wounds with large skin defects presents a real challenge for orthopedic or reconstructive surgeons. We developed a simple skin stretching system associated with vacuum sealing drainage to examine the efficiency and complication. A total of 34 patients with different types of complex wounds were retrospectively included from January 2015 to March 2021. All patients in the study were underwent the treatment by 2 stages. The method was used to the wounds from 4.71 to 169.65 cm2 with a median defect size of 25.13 cm2. The median time for wound closure was 11.5 days (range: 5-32 days), although the median absolute reduction was 2.08 cm2/day (range: 0.15-25.66 cm2/day). Depending on the site of the wounds, the cause of the wound, and the rate of max-width/max-length (W/L), these complex wounds could be separately divided into several groups. There were statistically significant differences in the median value of the above variables (P < .05 Kruskal-Wallis test). The results showed that different anatomical sites had different viscoelastic properties, the complex wounds caused by trauma were easier to close than caused by diabetic foot and the complex wounds in group A (W/L > 0.5) were more difficult to close than in group B (W/L ≤ 0.5). No major complications were encountered in this study. In summary, the results of our study showed that the simple skin stretching system associated with vacuum sealing drainage was a safe approach for closure of complex wounds. Nevertheless, more attention should be paid to the viscoelasticity of the wounds to ensure closure and avoid undue complications when applying the method.
Collapse
Affiliation(s)
- Yaojun Wu
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,74782Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Liang Chen
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,74782Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Xinliang Mao
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,74782Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | | | - Liying Yu
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,74782Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Mimi Chen
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,74782Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Jingnan Wang
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,74782Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Jiejie Chen
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,74782Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Qingjiang Pang
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,74782Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
2
|
Wu Y, Chen L, Wu S, Yu L, Chen M, Wang J, Chen J, Pang Q. Application of a simple skin stretching system and negative pressure wound therapy in repair of complex diabetic foot wounds. J Orthop Surg Res 2021; 16:258. [PMID: 33853638 PMCID: PMC8045371 DOI: 10.1186/s13018-021-02405-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
The management of complex diabetic foot wounds with large skin defects poses a challenge for surgeons. We presented a simple skin stretching system and negative pressure wound therapy for the repair of complex diabetic foot wounds to examine the effectiveness and safety. A total of 16 patients with diabetic foot ulcers were retrospectively reviewed between January 2015 and October 2020. All patients underwent the treatment by 3 stages. In stage 2, these difficult-to-close wounds of diabetes foot were residual. This method was applied to the wounds with a median defect size of 20.42 cm2 (range, 4.71–66.76 cm2). The median time for closure of complex diabetic foot wounds was 14 days ranging from 8 to 19 days. With respect to the absolute rates of reduction, it was observed with a median of 1.86 cm2/day, ranging from 0.29 cm2/day to 8.35 cm2/day. In accordance with the localization of the defect, the patients were divided into 3 groups: side of the foot (37.5%), dorsum of the foot (50.0%), and others (12.5%). There was no statistical difference between side of the foot and dorsum of the foot in terms of the median defect size with P = 0.069 (Kruskal–Wallis test). Otherwise, there were statistically significant differences regarding the median time and the median absolute rates (P < 0.05; Kruskal–Wallis test). No severe complications were encountered in this study. In summary, our results show that application of the simple skin stretching system and NPWT is an effective and safe approach to complex diabetic foot wounds. Nevertheless, more attention should be paid to the appropriate patient selection and intraoperative judgment to ensure wound closure and avoid undue complications.
Collapse
Affiliation(s)
- Yaojun Wu
- Department of Orthopedics, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China
| | - Liang Chen
- Department of Orthopedics, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China.
| | - Shaokun Wu
- Department of Orthopedics, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China
| | - Liying Yu
- Department of Orthopedics, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China
| | - Mimi Chen
- Department of Orthopedics, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China
| | - Jingnan Wang
- Department of Orthopedics, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China
| | - Jiejie Chen
- Department of Orthopedics, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China
| | - Qingjiang Pang
- Department of Orthopedics, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), No. 41 Northwest Street, Ningbo, 315010, Zhejiang, China
| |
Collapse
|
3
|
Freedman BR, Mooney DJ. Biomaterials to Mimic and Heal Connective Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806695. [PMID: 30908806 PMCID: PMC6504615 DOI: 10.1002/adma.201806695] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/27/2019] [Indexed: 05/11/2023]
Abstract
Connective tissue is one of the four major types of animal tissue and plays essential roles throughout the human body. Genetic factors, aging, and trauma all contribute to connective tissue dysfunction and motivate the need for strategies to promote healing and regeneration. The goal here is to link a fundamental understanding of connective tissues and their multiscale properties to better inform the design and translation of novel biomaterials to promote their regeneration. Major clinical problems in adipose tissue, cartilage, dermis, and tendon are discussed that inspire the need to replace native connective tissue with biomaterials. Then, multiscale structure-function relationships in native soft connective tissues that may be used to guide material design are detailed. Several biomaterials strategies to improve healing of these tissues that incorporate biologics and are biologic-free are reviewed. Finally, important guidance documents and standards (ASTM, FDA, and EMA) that are important to consider for translating new biomaterials into clinical practice are highligted.
Collapse
Affiliation(s)
- Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Sirisena R, Bellot GL, Puhaindran ME. The Role of Negative-Pressure Wound Therapy in Lower-Limb Reconstruction. Indian J Plast Surg 2019; 52:73-80. [PMID: 31456615 PMCID: PMC6664838 DOI: 10.1055/s-0039-1687922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Negative-pressure wound therapy (NPWT) has gained increasing popularity among clinicians since its introduction in 1997 as a potential aid to wound healing. Multiple benefits of NPWT have since been proven in studies, including increase in granulation tissue formation, decrease in bacterial load, and the improved survival of flaps. With our increasing use and greater understanding of the tissue and cellular changes that occur in a wound treated with NPWT, our lower-limb reconstructive practice has also evolved. Although controversial, the definite timing for lower-limb reconstruction has stretched from 72 hours to longer than 2 weeks as NPWT contains the wound within a sterile, closed system. It has also shown to decrease the rate of infection in open tibia fractures. Previously, a large number of critical defects of the lower limb would require free tissue transfer for definitive reconstruction. NPWT has reduced this rate by more than 50% and has allowed for less complicated resurfacing procedures to be performed instead.
Collapse
Affiliation(s)
- Renita Sirisena
- Department of Hand and Reconstructive Microsurgery, National University Hospital, Singapore
| | - Gregory Lucien Bellot
- Department of Hand and Reconstructive Microsurgery, National University Hospital, Singapore
| | - Mark Edward Puhaindran
- Department of Hand and Reconstructive Microsurgery, National University Hospital, Singapore
| |
Collapse
|
5
|
Lee HY, Lee HJ, Kim GC, Choi JH, Hong JW. Plasma cupping induces VEGF expression in skin cells through nitric oxide-mediated activation of hypoxia inducible factor 1. Sci Rep 2019; 9:3821. [PMID: 30846730 PMCID: PMC6405951 DOI: 10.1038/s41598-019-40086-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 01/31/2019] [Indexed: 12/23/2022] Open
Abstract
Despite a long history, the clinical efficacy of cupping therapy is still under debate. This is likely due to the lack of direct evidence for the biological actions of cupping, since the short exposure of cells to vacuum condition rarely has affects cellular activity. In this study, the medicinal properties of a recent medical technology, non-thermal plasma, were added to classical cupping and designated as 'plasma cupping' (PC). In our results, the plasma-generating efficacy was increased under a cupping-like semi-vacuum condition (410 Torr) rather than normal atmospheric pressure (760 Torr). Notably, while cupping rarely affects the angiogenic factor vascular-endothelial growth factor (VEGF)-A, the PC treatment on HaCaT human keratinocytes significantly induced the expression of VEGF-A. The increased expression of the VEGF-A gene after the PC treatment was expected to be a result of PC-mediated ERK protein activation. The PC-mediated activation of ERK was essential for the activity of hypoxia inducible factor (HIF) 1 alpha, which is responsible for the PC-mediated expression of VEGF-A. The PC mediated increase of NO in the media was thought as a main reason for the elevated HIF-1 protein activity. In addition to the angiogenesis-promoting action of PC, it also showed anti-inflammatory activity by reducing TNF-α-mediated IL-1β and IL-6 expression. Taken together, this study indicates the potential for PC that could enhance the clinical efficacy of cupping by adding the effects of non-thermal plasma to traditional cupping.
Collapse
Affiliation(s)
- Hyun-Young Lee
- Department of electrical engineering, Pusan National University, Busan, South Korea
| | - Hae-June Lee
- Department of electrical engineering, Pusan National University, Busan, South Korea
| | - Gyoo-Cheon Kim
- Department of Anatomy and Cell Biology, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Jeong-Hae Choi
- Department of Anatomy and Cell Biology, School of Dentistry, Pusan National University, Yangsan, South Korea.
- Department of Internal Medicine, School of Korean Medicine, Pusan National University, Yangsan, South Korea.
| | - Jin-Woo Hong
- Department of Internal Medicine, School of Korean Medicine, Pusan National University, Yangsan, South Korea.
| |
Collapse
|
6
|
Mu S, Hua Q, Jia Y, Chen MW, Tang Y, Deng D, He Y, Zuo C, Dai F, Hu H. Effect of negative-pressure wound therapy on the circulating number of peripheral endothelial progenitor cells in diabetic patients with mild to moderate degrees of ischaemic foot ulcer. Vascular 2019; 27:381-389. [PMID: 30841790 DOI: 10.1177/1708538119836360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objective To investigate the effect of negative-pressure wound therapy (NPWT) on the circulating number of endothelial progenitor cells (EPCs) in diabetic patients with mild to moderate degrees of ischemic foot ulcer. Methods We selected 84 diabetic patients who had a foot ulcer with a duration of at least four weeks and who had an ankle-brachial index of 0.5–0.9. Patients were assigned to one two groups according to 2:1 randomization: NPWT group ( n = 56) and non-NPWT (patients who did not receive NPWT) group ( n = 28). The control group (NC group) was composed of 18 patients who had normal glucose tolerance and lower extremity ulcer without arteriovenous disease. NPWT was performed on the ulcer after debridement for one week for patients in both the NPWT group and the NC group, and the patients in the non-NPWT group received conventional treatment process. The circulating number of EPCs was measured before and after various treatments, and the factors influencing their changes were analysed. Results After NPWT, the circulating number of EPCs significantly increased in both the NPWT group and the NC group ((85.3 ± 18.1) vs. (34.1 ± 12.5)/106 cells; (119.9 ± 14.4) vs. (66.1 ± 10.6)/106 cells, both P < 0.05). In contrast, the circulating number of EPCs had no significant change in the non-NPWT group ((45.2 ± 19.4) vs. (34.7 ± 16.8)/106 cells, P > 0.05). In addition, the circulating levels of vascular endothelial growth factor (VEGF) and the protein expressions of VEGF and stromal cell-derived factor-1α (SDF-1α) in the granulation tissue significantly increased after NPWT in both the NPWT and the NC group, but there was no significant change in the non-NPWT group. Compared with the non-NPWT group, the changes in VEGF and SDF-1α levels in the sera and granulation tissue were all significantly higher in both the NPWT and NC groups ( P < 0.05, P < 0.01, respectively). There was no significant difference in changes in the circulating number of EPCs in the peripheral blood and levels of VEGF and SDF-1α in the sera and granulation tissue between the NPWT and NC groups. Correlation analysis showed that the change in the circulating number of EPCs was correlated with the changes of VEGF and SDF-1α levels in the sera and granulation of the NPWT and NC groups ( P < 0.05). Conclusion NPWT may increase the circulating number of EPCs in diabetic patients with mild to moderate ischaemic foot ulcer as in non-diabetic controls, which may be attributed to the upregulation of systemic and local VEGF and SDF-1α levels.
Collapse
Affiliation(s)
- Shichang Mu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiaoqiao Hua
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yangyang Jia
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming-Wei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Diabetes Prevention and Control, Academy of Traditional Chinese Medicine, Hefei, China
| | - Yizhong Tang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Datong Deng
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong He
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chunlin Zuo
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fang Dai
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Honglin Hu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Bellot GL, Dong X, Lahiri A, Sebastin SJ, Batinic-Haberle I, Pervaiz S, Puhaindran ME. MnSOD is implicated in accelerated wound healing upon Negative Pressure Wound Therapy (NPWT): A case in point for MnSOD mimetics as adjuvants for wound management. Redox Biol 2019; 20:307-320. [PMID: 30390545 PMCID: PMC6218638 DOI: 10.1016/j.redox.2018.10.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/30/2018] [Accepted: 10/17/2018] [Indexed: 12/16/2022] Open
Abstract
Negative Pressure Wound Therapy (NPWT), a widely used modality in the management of surgical and trauma wounds, offers clear benefits over conventional wound healing strategies. Despite the wide-ranging effects ascribed to NPWT, the precise molecular mechanisms underlying the accelerated healing supported by NPWT remains poorly understood. Notably, cellular redox status-a product of the balance between cellular reactive oxygen species (ROS) production and anti-oxidant defense systems-plays an important role in wound healing and dysregulation of redox homeostasis has a profound effect on wound healing. Here we investigated potential links between the use of NPWT and the regulation of antioxidant mechanisms. Using patient samples and a rodent model of acute injury, we observed a significant accumulation of MnSOD protein as well as higher enzymatic activity in tissues upon NPWT. As a proof of concept and to outline the important role of SOD activity in wound healing, we replaced NPWT by the topical application of a MnSOD mimetic, Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP5+, MnE, BMX-010, AEOl10113) in the rodent model. We observed that MnE is a potent wound healing enhancer as it appears to facilitate the formation of new tissue within the wound bed and consequently advances wound closure by two days, compared to the non-treated animals. Taken together, these results show for the first time a link between NPWT and regulation of antioxidant mechanism through the maintenance of MnSOD activity. Additionally this discovery outlined the potential role of MnSOD mimetics as topical agents enhancing wound healing.
Collapse
Affiliation(s)
- Gregory Lucien Bellot
- Department of Hand & Reconstructive Microsurgery, University Orthopedic, Hand & Reconstructive Microsurgery Cluster, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xiaoke Dong
- Department of Hand & Reconstructive Microsurgery, University Orthopedic, Hand & Reconstructive Microsurgery Cluster, National University Health System, Singapore
| | - Amitabha Lahiri
- Department of Hand & Reconstructive Microsurgery, University Orthopedic, Hand & Reconstructive Microsurgery Cluster, National University Health System, Singapore
| | - Sandeep Jacob Sebastin
- Department of Hand & Reconstructive Microsurgery, University Orthopedic, Hand & Reconstructive Microsurgery Cluster, National University Health System, Singapore
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Medical Science Cluster Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia.
| | - Mark Edward Puhaindran
- Department of Hand & Reconstructive Microsurgery, University Orthopedic, Hand & Reconstructive Microsurgery Cluster, National University Health System, Singapore.
| |
Collapse
|
8
|
Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms. Adv Drug Deliv Rev 2018; 129:95-117. [PMID: 29627369 DOI: 10.1016/j.addr.2018.03.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/16/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
Skin wound healing aims to repair and restore tissue through a multistage process that involves different cells and signalling molecules that regulate the cellular response and the dynamic remodelling of the extracellular matrix. Nowadays, several therapies that combine biomolecule signals (growth factors and cytokines) and cells are being proposed. However, a lack of reliable evidence of their efficacy, together with associated issues such as high costs, a lack of standardization, no scalable processes, and storage and regulatory issues, are hampering their application. In situ tissue regeneration appears to be a feasible strategy that uses the body's own capacity for regeneration by mobilizing host endogenous stem cells or tissue-specific progenitor cells to the wound site to promote repair and regeneration. The aim is to engineer instructive systems to regulate the spatio-temporal delivery of proper signalling based on the biological mechanisms of the different events that occur in the host microenvironment. This review describes the current state of the different signal cues used in wound healing and skin regeneration, and their combination with biomaterial supports to create instructive microenvironments for wound healing.
Collapse
|
9
|
Wu JP, Jiang ZH, Feng XJ, Jiang JN, Cheng MH. Negative Pressure Therapy in the Regeneration of the Sciatic Nerve Using Vacuum - Assisted Closure in a Rabbit Model. Med Sci Monit 2018; 24:1027-1033. [PMID: 29457605 PMCID: PMC5827701 DOI: 10.12659/msm.906696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The aim of this study was to investigate the effects of negative pressure therapy in the regeneration of the rabbit sciatic nerve using vacuum assisted closure (VAC). Material/Methods Thirty male New Zealand white rabbits underwent surgical injury of the sciatic nerve, followed by negative pressure therapy using vacuum assisted closure (VAC), in three treatment groups: Group A: 0 kPa; Group B: −20 kPa; Group C: −40 kPa. At 12 weeks following surgery, the following factors were studied: motor nerve conduction velocity (MNCV); the number of myelinated nerve fibers; the wet weight of the gastrocnemius muscle. Gastrocnemius muscle and sciatic nerve tissue samples were studied for the expression of S100, and brain-derived neurotrophic factor (BDNF) using Western blot. Results At 12 weeks following VAC treatment, the MNCV, number of myelinated nerve fibers, and wet weight of the gastrocnemius muscle showed significant differences between the groups (p<0.05), in the following order: Group B >Group A >Group C. The sciatic nerve at 12 weeks following VAC in Group B and Group C showed a significant increase in expression of S100 and BDNF when compared with Group A; no significant differences were detected between Group B and Group C results from Western blot at 12 weeks. Conclusions The findings of this study, using negative pressure therapy in VAC in a rabbit model of sciatic nerve damage, have shown that moderate negative pressure was beneficial, but high values did not benefit sciatic nerve repair.
Collapse
Affiliation(s)
- Jian-Ping Wu
- Department of Orthopaedics, Yixing Hospital of Jiangsu Unversity, Yixin, Jiangsu, China (mainland)
| | - Zhen-Huan Jiang
- Department of Orthopaedics, Yixing Hospital of Jiangsu Unversity, Yixin, Jiangsu, China (mainland)
| | - Xiao-Jun Feng
- Xishan People's Hospital of Wuxi, Wuxing, Jiangsu, China (mainland)
| | - Jian-Nong Jiang
- Department of Orthopaedics, Yixing Hospital of Jiangsu Unversity, Yixin, Jiangsu, China (mainland)
| | - Mao-Hua Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
10
|
Ribeiro MAF, Barros EA, Carvalho SMDE, Nascimento VP, Cruvinel J, Fonseca AZ. Comparative study of abdominal cavity temporary closure techniques for damage control. Rev Col Bras Cir 2017; 43:368-373. [PMID: 27982331 DOI: 10.1590/0100-69912016005015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/16/2016] [Indexed: 11/22/2022] Open
Abstract
The damage control surgery, with emphasis on laparostomy, usually results in shrinkage of the aponeurosis and loss of the ability to close the abdominal wall, leading to the formation of ventral incisional hernias. Currently, various techniques offer greater chances of closing the abdominal cavity with less tension. Thus, this study aims to evaluate three temporary closure techniques of the abdominal cavity: the Vacuum-Assisted Closure Therapy - VAC, the Bogotá Bag and the Vacuum-pack. We conducted a systematic review of the literature, selecting 28 articles published in the last 20 years. The techniques of the bag Bogotá and Vacuum-pack had the advantage of easy access to the material in most centers and low cost, contrary to VAC, which, besides presenting high cost, is not available in most hospitals. On the other hand, the VAC technique was more effective in reducing stress at the edges of lesions, removing stagnant fluids and waste, in addition to acting at the cellular level by increasing proliferation and cell division rates, and showed the highest rates of primary closure of the abdominal cavity. RESUMO A cirurgia de controle de danos, com ênfase em peritoneostomia, geralmente resulta em retração da aponeurose e perda da capacidade de fechar a parede abdominal, levando à formação de hérnias ventrais incisionais. Atualmente, várias técnicas oferecem maiores chances de fechamento da cavidade abdominal, com menor tensão. Deste modo, este estudo tem por objetivo avaliar três técnicas de fechamento temporário da cavidade abdominal: fechamento a vácuo (Vacuum-Assisted Closure Therapy - VAC), Bolsa de Bogotá e Vacuum-pack. Realizou-se uma revisão sistemática da literatura com seleção de 28 artigos publicados nos últimos 20 anos. As técnicas de Bolsa de Bogotá e Vacuum-pack tiveram como vantagem o acesso fácil ao material, na maioria dos centros, e baixo custo, ao contrário do que se observa na terapia a vácuo, VAC, que além de apresentar alto custo, não está disponível em grande parte dos hospitais. A técnica VAC, por outro lado, foi mais eficaz na redução da tensão nas bordas das lesões, ao remover fluidos estagnados e detritos, além de exercer ação a nível celular, aumentando as taxas de proliferação e divisão celular, e apresentou as maiores taxas de fechamento primário da cavidade abdominal.
Collapse
Affiliation(s)
| | - Emily Alves Barros
- Medicine School, University of Santo Amaro (UNISA), Santo Amaro, SP, Brasil
| | | | | | - José Cruvinel
- Medicine School, University of Santo Amaro (UNISA), Santo Amaro, SP, Brasil
| | | |
Collapse
|
11
|
Managing Complications in Abdominoplasty: A Literature Review. Arch Plast Surg 2017; 44:457-468. [PMID: 28946731 PMCID: PMC5621815 DOI: 10.5999/aps.2017.44.5.457] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 11/08/2022] Open
Abstract
Background Abdominoplasty, with or without liposuction, is among the most frequently performed aesthetic procedures. Its main objective is to improve the body contour by means of excising redundant skin and fat tissue. Although abdominoplasty is considered a safe procedure with high satisfaction rates, intraoperative and postoperative complications can become a challenge for the surgical team. The aim of this article is to offer a synopsis of the most common complications arising after abdominoplasty, along with evidence-based guidelines about how to prevent and treat them. Methods A systematic MEDLINE search strategy was designed using appropriate Medical Subject Headings (MeSH) terms, and references were scanned for further relevant articles. Results According to the published case series, local complications are considerably more common than complications with systemic repercussions. Approximately 10% to 20% of patients suffer a local complication following abdominoplasty, while fewer than 1% suffer a systemic complication. Prevention and management strategies are critically discussed for complications including seroma, haematoma, infection, skin necrosis, suture extrusions, hypertrophic scars, neurological symptoms, umbilical anomalies, deep venous thrombosis and pulmonary thromboembolism, respiratory distress, and death. Conclusions The complications of abdominoplasty vary in severity and in the impact they have on the aesthetic outcomes. Recommendations for prevention and management are based on various levels of evidence, with a risk of observer bias. However, most complications can be treated appropriately following the current standards, with satisfactory results.
Collapse
|
12
|
Ribeiro Junior MAF, Barros EA, de Carvalho SM, Nascimento VP, Cruvinel Neto J, Fonseca AZ. Open abdomen in gastrointestinal surgery: Which technique is the best for temporary closure during damage control? World J Gastrointest Surg 2016; 8:590-597. [PMID: 27648164 PMCID: PMC5003939 DOI: 10.4240/wjgs.v8.i8.590] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/23/2016] [Accepted: 07/11/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To compare the 3 main techniques of temporary closure of the abdominal cavity, vacuum assisted closure (vacuum-assisted closure therapy - VAC), Bogota bag and Barker technique, in damage control surgery. METHODS After systematic review of the literature, 33 articles were selected to compare the efficiency of the three procedures. Criteria such as cost, infections, capacity of reconstruction of the abdominal wall, diseases associated with the technique, among others were analyzed. RESULTS The Bogota bag and Barker techniques present as advantage the availability of material and low cost, what is not observed in the VAC procedure. The VAC technique is the most efficient, not only because it reduces the tension on the boarders of the lesion, but also removes stagnant fluids and debris and acts at cellular level increasing cell proliferation and division. Bogota bag presents the higher rates of skin laceration and evisceration, greater need for a stent for draining fluids and wash-ups, higher rates of intestinal adhesion to the abdominal wall. The Barker technique presents lack of efficiency in closing the abdominal wall and difficulty on maintaining pressure on the dressing. The VAC dressing can generate irritation and dermatitis when the drape is applied, in addition to pain, infection and bleeding, as well as toxic shock syndrome, anaerobic sepsis and thrombosis. CONCLUSION The VAC technique, showed to be superior allowing a better control of liquid on the third space, avoiding complications such as fistula with small mortality, low infection rate, and easier capability on primary closure of the abdominal cavity.
Collapse
|
13
|
Yuan XG, Zhang X, Fu YX, Tian XF, Liu Y, Xiao J, Li TW, Qiu L. Sequential therapy with "vacuum sealing drainage-artificial dermis implantation-thin partial thickness skin grafting" for deep and infected wound surfaces in children. Orthop Traumatol Surg Res 2016; 102:369-73. [PMID: 27038673 DOI: 10.1016/j.otsr.2016.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/29/2015] [Accepted: 01/06/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate the efficacy of a "vacuum sealing drainage (VSD) - artificial dermis implantation (ADI) - thin partial thickness skin grafting (TSG)" sequential therapy for deep and infected wounds in children. MATERIALS AND METHODS Fifty-three pediatric patients with deep and infected wounds were treated with sequential VSD-ADI-TSG therapy. The efficacy of this treatment was compared with that of the surgical debridement-change dressings-thin partial thickness skin grafting previously performed on 20 patients. Survival of tissue grafts, color and flexibility, subcutaneous fullness and scar formation of the graft site were examined and compared. RESULTS The sequential therapy combined the advantages of the VSD treatment, in reducing tissue necrosis and infection on the wound surfaces and promoting the growth of granulation tissue, with the enhancement of grafting by artificial dermis. Compared with the 20 controls, skin grafted on the artificial dermis was more smooth and glossy, while the textures of the region were more elastic, and the scars were significantly lighter in Vancouver scale. CONCLUSION The sequential VSD-ADI-TSG therapy is a simple and effective treatment for children with deep and infected wounds. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- X-G Yuan
- Children's Hospital of Chongqing Medical University, Department of Burns and Plastic Surgery, No. 136, Zhongshan 2nd Road, 400014 Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing (CSTC2009CA5002), Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - X Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing (CSTC2009CA5002), Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Y-X Fu
- Children's Hospital of Chongqing Medical University, Department of Burns and Plastic Surgery, No. 136, Zhongshan 2nd Road, 400014 Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing (CSTC2009CA5002), Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - X-F Tian
- Children's Hospital of Chongqing Medical University, Department of Burns and Plastic Surgery, No. 136, Zhongshan 2nd Road, 400014 Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing (CSTC2009CA5002), Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Y Liu
- Children's Hospital of Chongqing Medical University, Department of Burns and Plastic Surgery, No. 136, Zhongshan 2nd Road, 400014 Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing (CSTC2009CA5002), Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - J Xiao
- Children's Hospital of Chongqing Medical University, Department of Burns and Plastic Surgery, No. 136, Zhongshan 2nd Road, 400014 Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing (CSTC2009CA5002), Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - T-W Li
- Children's Hospital of Chongqing Medical University, Department of Burns and Plastic Surgery, No. 136, Zhongshan 2nd Road, 400014 Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing (CSTC2009CA5002), Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - L Qiu
- Children's Hospital of Chongqing Medical University, Department of Burns and Plastic Surgery, No. 136, Zhongshan 2nd Road, 400014 Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing (CSTC2009CA5002), Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China.
| |
Collapse
|
14
|
Effects of toll-like receptors 3 and 4 in the osteogenesis of stem cells. Stem Cells Int 2014; 2014:917168. [PMID: 25610471 PMCID: PMC4290028 DOI: 10.1155/2014/917168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/16/2014] [Accepted: 12/01/2014] [Indexed: 12/03/2022] Open
Abstract
Objective. To investigate the effects of Toll-like receptors in stem cell osteogenesis. Methods. Bone marrow mesenchymal stem cells (BMSCs) were divided into the blank group, the TLR-3 activated group, and the TLR-4 activated group. After 10 days' osteogenic-promoting culture, expression of type I collagen and osteocalcin was determined by Western blot. Osteoblasts (OBs) were also divided into three groups mentioned above. Alkaline phosphatase (ALP) and alizarin red staining were performed after 10 days' ossification-inducing culture. The expression of β-catenin was investigated by Western blot. Results. Both the TLR-3 and TLR-4 activated groups had increased expression of type I collagen and osteocalcin; the effect of TLR-4 was stronger. The intensity of alizarin red and ALP staining was strongest in the TLR-3 activated group and weakest in the TLR-4 activated group. Activation of TLR-4 decreased the expression of β-catenin, whilst activation of TLR-3 did not affect the expression of β-catenin. Discussion. This study suggested that both TLR-3 and -4 promoted differentiation of BMSCs to OBs. TLR-3 had an inducing effect on the ossification of OBs to osteocytes, whilst the effect of TLR-4 was the opposite because of its inhibitory effect on the Wnt signaling pathway.
Collapse
|