1
|
Koushki M, Amiri-Dashatan N, Khodadadi M, Masnavi E, Doustimotlagh AH. The potential predictive value of miR-181 in women with preeclampsia: a systematic review and meta-analysis. BMC Pregnancy Childbirth 2025; 25:474. [PMID: 40269776 PMCID: PMC12020110 DOI: 10.1186/s12884-025-07589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Preeclampsia (PE) is a pregnancy-associated disease that result in maternal and fetal morbidity and mortality worldwide. Several studies demonstrated the alterations in miRs (miRNAs) expression in PE. The aim of the present study was to determine the expression level of miR-181 and whether miR-181 have a diagnostic value in detection of women with PE compared to women without PE. METHODS A systematic review and meta-analysis were performed based on studies reporting the miRNA expression level of miR-181 in placenta or serum between pregnant women with and without PE. Thus, articles published up to December 17, 2024 were extracted through PubMed, Scopus, Web of Science and Embase. The electronic literature search was conducted independently by two authors to obtain eligible studies based on the screening of title, abstract and full-text and quality appraisal. Subgroup analyses, area under the curve (AUC) were calculated. Standardized mean difference (SMD) was applied as a measure of pooled effect size. RESULTS Twelve studies were included in the systematic review and meta-analysis based on inclusion criteria. The results show that the expression level of miR-181 is significantly higher in women with PE compared to women without PE (SMD = 1.84, 95%CI 0.47-3.21, p = 0.008). No publication bias was observed using the Begg's rank correlation (p = 0.20) and Egger's linear regression (p = 0.57) tests. Subgroup analyses demonstrated significant correlation between miR-181 levels in placenta or serum with maternal age, gestational age at delivery and birth weight. In addition, the pooled AUC was (0.95 ± 0.038; p < 0.0001) that shows the high diagnostic value of miR-181 in women with PE. CONCLUSIONS miR-181 can be a promising potential biomarker in the early detection of women with PE compared to women without PE. Albeit, further studies are needed for the more confirmation and validation this result.
Collapse
Affiliation(s)
- Mehdi Koushki
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Khodadadi
- School of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Elahe Masnavi
- Department of Gynecology and Obstetrics, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Hossein Doustimotlagh
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
2
|
Lv B, He S, Li P, Jiang S, Li D, Lin J, Feinberg MW. MicroRNA-181 in cardiovascular disease: Emerging biomarkers and therapeutic targets. FASEB J 2024; 38:e23635. [PMID: 38690685 PMCID: PMC11068116 DOI: 10.1096/fj.202400306r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. MicroRNAs (MiRNAs) have attracted considerable attention for their roles in several cardiovascular disease states, including both the physiological and pathological processes. In this review, we will briefly describe microRNA-181 (miR-181) transcription and regulation and summarize recent findings on the roles of miR-181 family members as biomarkers or therapeutic targets in different cardiovascular-related conditions, including atherosclerosis, myocardial infarction, hypertension, and heart failure. Lessons learned from these studies may provide new theoretical foundations for CVD.
Collapse
Affiliation(s)
- Bingjie Lv
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaolin He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peixin Li
- Second Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijiu Jiang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, The First Affiliated Hospital, Shihezi University, Shihezi, 832000, China
| | - Dazhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jibin Lin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Zhu L, Gou W, Ou L, Liu B, Liu M, Feng H. Role and new insights of microfibrillar-associated protein 4 in fibrotic diseases. APMIS 2024; 132:55-67. [PMID: 37957836 DOI: 10.1111/apm.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Fibrosis is one of the most worrisome complications of chronic inflammatory diseases, leading to tissue damage, organ failure, and ultimately, death. The most notable pathological characteristic of fibrosis is the excessive accumulation of extracellular matrix (ECM) components such as collagen and fibronectin adjacent to foci of inflammation or damage. The human microfibrillar-associated protein 4 (MFAP4), an important member of the superfamily of fibrinogen-related proteins, is considered to have an extremely important role in ECM transformation of fibrogenesis. This review summarizes the structure, characteristics, and physiological functions of MFAP4 and the importance of MFAP4 in various fibrotic diseases. Meanwhile, we elaborated the underlying actions and mechanisms of MFAP4 in the development of fibrosis, suggesting that a better understand of MFAP4 broadens novel perspective for early screening, diagnosis, prognostic risk assessment, and treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Long Zhu
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Changsha, China
- Xiangya Stomatological Hospital, Changsha, China
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Wenqun Gou
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Changsha, China
- Xiangya Stomatological Hospital, Changsha, China
- Xiangya School of Stomatology, Central South University, Changsha, China
- Changsha Stomatological Hospital, Changsha, China
| | - Lijia Ou
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Changsha, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Binjie Liu
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Changsha, China
- Xiangya Stomatological Hospital, Changsha, China
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Manyi Liu
- Xiangya Stomatological Hospital, Changsha, China
- Xiangya School of Stomatology, Central South University, Changsha, China
| | - Hui Feng
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Changsha, China
- Xiangya Stomatological Hospital, Changsha, China
- Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
4
|
Cirkovic A, Stanisavljevic D, Milin-Lazovic J, Rajovic N, Pavlovic V, Milicevic O, Savic M, Kostic Peric J, Aleksic N, Milic N, Stanisavljevic T, Mikovic Z, Garovic V, Milic N. Preeclamptic Women Have Disrupted Placental microRNA Expression at the Time of Preeclampsia Diagnosis: Meta-Analysis. Front Bioeng Biotechnol 2022; 9:782845. [PMID: 35004644 PMCID: PMC8740308 DOI: 10.3389/fbioe.2021.782845] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction: Preeclampsia (PE) is a pregnancy-associated, multi-organ, life-threatening disease that appears after the 20th week of gestation. The aim of this study was to perform a systematic review and meta-analysis to determine whether women with PE have disrupted miRNA expression compared to women who do not have PE. Methods: We conducted a systematic review and meta-analysis of studies that reported miRNAs expression levels in placenta or peripheral blood of pregnant women with vs. without PE. Studies published before October 29, 2021 were identified through PubMed, EMBASE and Web of Science. Two reviewers used predefined forms and protocols to evaluate independently the eligibility of studies based on titles and abstracts and to perform full-text screening, data abstraction and quality assessment. Standardized mean difference (SMD) was used as a measure of effect size. Results: 229 publications were included in the systematic review and 53 in the meta-analysis. The expression levels in placenta were significantly higher in women with PE compared to women without PE for miRNA-16 (SMD = 1.51,95%CI = 0.55-2.46), miRNA-20b (SMD = 0.89, 95%CI = 0.33-1.45), miRNA-23a (SMD = 2.02, 95%CI = 1.25-2.78), miRNA-29b (SMD = 1.37, 95%CI = 0.36-2.37), miRNA-155 (SMD = 2.99, 95%CI = 0.83-5.14) and miRNA-210 (SMD = 1.63, 95%CI = 0.69-2.58), and significantly lower for miRNA-376c (SMD = -4.86, 95%CI = -9.51 to -0.20). An increased level of miRNK-155 expression was found in peripheral blood of women with PE (SMD = 2.06, 95%CI = 0.35-3.76), while the expression level of miRNA-16 was significantly lower in peripheral blood of PE women (SMD = -0.47, 95%CI = -0.91 to -0.03). The functional roles of the presented miRNAs include control of trophoblast proliferation, migration, invasion, apoptosis, differentiation, cellular metabolism and angiogenesis. Conclusion: miRNAs play an important role in the pathophysiology of PE. The identification of differentially expressed miRNAs in maternal blood creates an opportunity to define an easily accessible biomarker of PE.
Collapse
Affiliation(s)
- Andja Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dejana Stanisavljevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Milin-Lazovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nina Rajovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vedrana Pavlovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ognjen Milicevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Savic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Kostic Peric
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Natasa Aleksic
- Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Nikola Milic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Zeljko Mikovic
- Clinic for Gynecology and Obstetrics Narodni Front, Belgrade, Serbia
| | - Vesna Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Natasa Milic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
5
|
Short-Chain Fatty Acids, Maternal Microbiota and Metabolism in Pregnancy. Nutrients 2021; 13:nu13041244. [PMID: 33918804 PMCID: PMC8069164 DOI: 10.3390/nu13041244] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Short-chain fatty acids (SCFAs), as products of intestinal bacterial metabolism, are particularly relevant in the diagnosis of intestinal dysbiosis. The most common studies of microbiome metabolites include butyric acid, propionic acid and acetic acid, which occur in varying proportions depending on diet, age, coexisting disease and other factors. During pregnancy, metabolic changes related to the protection of energy homeostasis are of fundamental importance for the developing fetus, its future metabolic fate and the mother’s health. SCFAs act as signaling molecules that regulate the body’s energy balance through G-protein receptors. GPR41 receptors affect metabolism through the microflora, while GPR43 receptors are recognized as a molecular link between diet, microflora, gastrointestinal tract, immunity and the inflammatory response. The possible mechanism by which the gut microflora may contribute to fat storage, as well as the occurrence of gestational insulin resistance, is blocking the expression of the fasting-induced adipose factor. SCFAs, in particular propionic acid via GPR, determine the development and metabolic programming of the fetus in pregnant women. The mechanisms regulating lipid metabolism during pregnancy are similar to those found in obese people and those with impaired microbiome and its metabolites. The implications of SCFAs and metabolic disorders during pregnancy are therefore critical to maternal health and neonatal development. In this review paper, we summarize the current knowledge about SCFAs, their potential impact and possible mechanisms of action in relation to maternal metabolism during pregnancy. Therefore, they constitute a contemporary challenge to practical nutritional therapy. Material and methods: The PubMed database were searched for “pregnancy”, “lipids”, “SCFA” in conjunction with “diabetes”, “hypertension”, and “microbiota”, and searches were limited to work published for a period not exceeding 20 years in the past. Out of 2927 publication items, 2778 papers were excluded from the analysis, due to being unrelated to the main topic, conference summaries and/or articles written in a language other than English, while the remaining 126 publications were included in the analysis.
Collapse
|
6
|
Dolmatova EV, Wang K, Mandavilli R, Griendling KK. The effects of sepsis on endothelium and clinical implications. Cardiovasc Res 2021; 117:60-73. [PMID: 32215570 PMCID: PMC7810126 DOI: 10.1093/cvr/cvaa070] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/03/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT Sepsis accounts for nearly 700 000 deaths in Europe annually and is caused by an overwhelming host response to infection resulting in organ failure. The endothelium is an active contributor to sepsis and as such represents a major target for therapy. During sepsis, endothelial cells amplify the immune response and activate the coagulation system. They are both a target and source of inflammation and serve as a link between local and systemic immune responses. In response to cytokines produced by immune cells, the endothelium expresses adhesion molecules and produces vasoactive compounds, inflammatory cytokines, and chemoattractants, thus switching from an anticoagulant to procoagulant state. These responses contribute to local control of infection, but systemic activation can lead to microvascular thrombosis, capillary permeability, hypotension, tissue hypoxia, and ultimately tissue damage. This review focuses on the role of the endothelium in leucocyte adhesion and transmigration as well as production of reactive oxygen and nitrogen species, microRNAs and cytokines, formation of signalling microparticles, and disseminated intravascular coagulation. We also discuss alterations in endothelial permeability and apoptosis. Finally, we review the diagnostic potential of endothelial markers and endothelial pathways as therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Elena V Dolmatova
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Keke Wang
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Rohan Mandavilli
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Wu GM, Jin Y, Cao YM, Li JY. The diagnostic value and regulatory mechanism of miR-200a targeting ZEB1 in pregnancy-induced hypertension. Hypertens Pregnancy 2020; 39:243-251. [PMID: 32345067 DOI: 10.1080/10641955.2020.1757700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Gui-Mei Wu
- Department of Obstetrics, Cangzhou Central Hospital, Cangzhou, China
| | - Yan Jin
- Department of Obstetrics, Cangzhou Central Hospital, Cangzhou, China
| | - Yan-Min Cao
- Department of Obstetrics, Cangzhou Central Hospital, Cangzhou, China
| | - Ji-Yun Li
- Department of Obstetrics, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
8
|
Wang K, Lu C, Liu Y, Tao Y. In vitro
effects of sEng and TGF-β on human umbilical vein endothelial cells and trophoblasts. J Obstet Gynaecol Res 2018; 44:1023-1030. [PMID: 29673026 DOI: 10.1111/jog.13643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/20/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Ketao Wang
- Suzhou Hospital Affiliated to Nanjing Medical University; Suzhou Jiangsu Province China
| | - Caihua Lu
- Suzhou Hospital Affiliated to Nanjing Medical University; Suzhou Jiangsu Province China
| | - Yanpo Liu
- Department of Speacial Diseases; Branch Hospital of Dezhou Municiple Hospital; Dezhou China
| | - Ye Tao
- Suzhou Science and Technology Town Hospital; Suzhou Jiangsu Province China
| |
Collapse
|
9
|
Gao J, Ma X, Zhang Y, Guo M, Shi D. The role of microRNAs in prethrombotic status associated with coronary artery disease. Thromb Haemost 2017; 117:429-436. [DOI: 10.1160/th16-07-0503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022]
Abstract
SummaryThe acute cardiovascular events following thrombus formation is a primary cause of morbidity and mortality of patients with coronary artery disease (CAD). Numerous studies have shown that a prethrombotic status, which can be defined as an imbalance between the procoagulant and anticoagulant conditions, would exist for a period of time before thrombogenesis. Therefore, early diagnosis and intervention of prethrombotic status are important for reducing acute cardiovascular events. However, none of prethrombotic indicators have been identified as golden standard for diagnosis of prethrombotic status to date. MicroRNAs (miRNAs), a class of short non-coding RNAs, have been shown to be involved in pathophysiologic processes related to prethrombotic status, such as endothelial dysfunction, platelet activation, impaired fibrinolysis and elevated procoagulant factors, etc. Owing to their multiple and fine-tuning impacts on gene expression, miRNAs raise a novel understanding in the underlying mechanism of prethrombotic status. This review aims to discuss the role of miRNAs in prethrombotic status, especially the differently expressed miRNAs in CAD, which may be meaningful for developing promising diagnostic biomarkers and therapeutic strategies for CAD patients in future.
Collapse
|
10
|
Rabieian R, Boshtam M, Zareei M, Kouhpayeh S, Masoudifar A, Mirzaei H. Plasminogen Activator Inhibitor Type-1 as a Regulator of Fibrosis. J Cell Biochem 2017; 119:17-27. [PMID: 28520219 DOI: 10.1002/jcb.26146] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022]
Abstract
Fibrosis is known as a frequent and irreversible pathological condition which is associated with organ failure. Tissue fibrosis is a central process in a variety of chronic progressive diseases such as diabetes, hypertension, and persistent inflammation. This state could contribute to chronic injury and the initiation of tissue repair. Fibrotic disorders represent abnormal wound healing with defective matrix turnover and clearance that lead to excessive accumulation of extracellular matrix components. A variety of identified growth factors, cytokines, and persistently activated myofibroblasts have critical roles in the pathogenesis of fibrosis. Irrespective of etiology, the transforming growth factor-β pathway is the major driver of fibrotic response. Plasminogen activator inhibitor-1 (PAI-1) is a crucial downstream target of this pathway. Transforming growth factor-β positively regulates PAI-1 gene expression via two main pathways including Smad-mediated canonical and non-canonical pathways. Overexpression of PAI-1 reduces extracellular matrix degradation via perturbing the plasminogen activation system. Indeed, elevated PAI-1 levels inhibit proteolytic activity of tissue plasminogen activator and urokinase plasminogen activator which could contribute to a variety of inflammatory elements in the injury site and to excessive matrix deposition. This review summarizes the current knowledge of critical pathways that regulate PAI-1 gene expression and suggests effective approaches for the treatment of fibrotic disease. J. Cell. Biochem. 119: 17-27, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Reyhaneh Rabieian
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshid Zareei
- Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran
| | - Shirin Kouhpayeh
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Role of microRNAs in sepsis. Inflamm Res 2017; 66:553-569. [PMID: 28258291 DOI: 10.1007/s00011-017-1031-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 12/15/2022] Open
|
12
|
Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Dekker Nitert M. Increased Systolic and Diastolic Blood Pressure Is Associated With Altered Gut Microbiota Composition and Butyrate Production in Early Pregnancy. Hypertension 2016; 68:974-81. [PMID: 27528065 DOI: 10.1161/hypertensionaha.116.07910] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
The risk of developing pregnancy-induced hypertension and preeclampsia is higher in obese pregnant women. In obesity, the composition of the gut microbiota is altered. Obesity is also associated with low-grade inflammation. Metabolites from the gut microbiota may contribute to both hypertension and inflammation. The aim of this study is to investigate whether the composition of the gut microbiota in overweight and obese pregnant women is associated with blood pressure and levels of plasminogen activator inhibitor-1. The composition of the gut microbiota was determined with 16S ribosomal RNA sequencing in 205 women at 16 weeks gestation from the SPRING study (the Study of Probiotics in Gestational Diabetes). Expression of butyrate-producing genes in the gut microbiota was assessed by real-time polymerase chain reaction. Plasminogen activator inhibitor-1 levels were measured in fasting serum of a subset of 70 women. Blood pressure was slightly but significantly higher in obese compared with overweight women. The abundance of the butyrate-producing genus Odoribacter was inversely correlated with systolic blood pressure. Butyrate production capacity was decreased, but plasminogen activator inhibitor-1 concentrations increased in obese pregnant women. Plasminogen activator inhibitor-1 levels were inversely correlated with expression of butyrate kinase and Odoribacter abundance. This study shows that in overweight and obese pregnant women at 16 weeks gestation, the abundance of butyrate-producing bacteria and butyrate production in the gut microbiota is significantly negatively associated with blood pressure and with plasminogen activator inhibitor-1 levels. Increasing butyrate-producing capacity may contribute to maintenance of normal blood pressure in obese pregnant women.
Collapse
Affiliation(s)
- Luisa F Gomez-Arango
- From the School of Medicine (L.F.G.-A., H.L.B., H.D.M., L.K.C., M.D.N.), UQ Centre for Clinical Research (L.F.G.-A., H.L.B., L.K.C., M.D.N.), Mater Research Institute (H.D.M.), and Diamantina Institute, Faculty of Medicine and Biomedical Sciences (M.M.), The University of Queensland, Brisbane, Australia; and Obstetric Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia (H.L.B., L.K.C.)
| | - Helen L Barrett
- From the School of Medicine (L.F.G.-A., H.L.B., H.D.M., L.K.C., M.D.N.), UQ Centre for Clinical Research (L.F.G.-A., H.L.B., L.K.C., M.D.N.), Mater Research Institute (H.D.M.), and Diamantina Institute, Faculty of Medicine and Biomedical Sciences (M.M.), The University of Queensland, Brisbane, Australia; and Obstetric Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia (H.L.B., L.K.C.)
| | - H David McIntyre
- From the School of Medicine (L.F.G.-A., H.L.B., H.D.M., L.K.C., M.D.N.), UQ Centre for Clinical Research (L.F.G.-A., H.L.B., L.K.C., M.D.N.), Mater Research Institute (H.D.M.), and Diamantina Institute, Faculty of Medicine and Biomedical Sciences (M.M.), The University of Queensland, Brisbane, Australia; and Obstetric Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia (H.L.B., L.K.C.)
| | - Leonie K Callaway
- From the School of Medicine (L.F.G.-A., H.L.B., H.D.M., L.K.C., M.D.N.), UQ Centre for Clinical Research (L.F.G.-A., H.L.B., L.K.C., M.D.N.), Mater Research Institute (H.D.M.), and Diamantina Institute, Faculty of Medicine and Biomedical Sciences (M.M.), The University of Queensland, Brisbane, Australia; and Obstetric Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia (H.L.B., L.K.C.)
| | - Mark Morrison
- From the School of Medicine (L.F.G.-A., H.L.B., H.D.M., L.K.C., M.D.N.), UQ Centre for Clinical Research (L.F.G.-A., H.L.B., L.K.C., M.D.N.), Mater Research Institute (H.D.M.), and Diamantina Institute, Faculty of Medicine and Biomedical Sciences (M.M.), The University of Queensland, Brisbane, Australia; and Obstetric Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia (H.L.B., L.K.C.)
| | - Marloes Dekker Nitert
- From the School of Medicine (L.F.G.-A., H.L.B., H.D.M., L.K.C., M.D.N.), UQ Centre for Clinical Research (L.F.G.-A., H.L.B., L.K.C., M.D.N.), Mater Research Institute (H.D.M.), and Diamantina Institute, Faculty of Medicine and Biomedical Sciences (M.M.), The University of Queensland, Brisbane, Australia; and Obstetric Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia (H.L.B., L.K.C.).
| | | |
Collapse
|
13
|
Pessi T, Viiri LE, Raitoharju E, Astola N, Seppälä I, Waldenberger M, Lounatmaa K, Davies AH, Lehtimäki T, Karhunen PJ, Monaco C. Interleukin-6 and microRNA profiles induced by oral bacteria in human atheroma derived and healthy smooth muscle cells. SPRINGERPLUS 2015; 4:206. [PMID: 25984438 PMCID: PMC4424225 DOI: 10.1186/s40064-015-0993-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/21/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Atherosclerosis is an inflammatory disease with possible contributions from bacterial antigens. We aimed to investigate the role of oral bacteria as inducers of inflammatory cascades in smooth muscle cells from carotid endarterectomy patients (AthSMCs) and healthy controls (HSMCs). FINDINGS Inactivated Streptococcus mitis, S. sanguinis, S. gorgonii, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis were used to stimulate inflammation in HSMCs and AthSMCs. Tumor necrosis factor-α (TNFα) was used as a positive control in all stimulations. Interleukin-6 (IL-6) levels were determined from cell culture supernatants and microRNA expression profiles from cells after 24 h of bacterial stimulation. Genome wide expression (GWE) analyses were performed after 5 h stimulation. All studied bacteria induced pro inflammatory IL-6 production in both SMCs. The most powerful inducer of IL-6 was A. actinomycetemcomitans (p < 0.001). Of the 84 studied miRNAs, expression of 9 miRNAs differed significantly (p ≤ 0.001) between HSMCs and AthSMCs stimulated with inactivated bacteria or TNFα. The data was divided into two groups: high IL-6 producers (A. actinomytectemcomititans and TNFα) and low IL-6 producers (streptococcal strains and P. gingivalis). The expression of 4 miRNAs (miR-181-5p, -186-5p, -28-5p and -155-5p) differed statistically significantly (p < 0.001) between healthy HSMCs and AthSMCs in the low IL-6 producer group. According to multidimensional scaling, two gene expression clusters were seen: one in HSMCs and one AthSMCs. CONCLUSIONS Our results suggest that inactivated oral bacteria induce inflammation that is differently regulated in healthy and atherosclerotic SMCs.
Collapse
Affiliation(s)
- Tanja Pessi
- Pirkanmaa Hospital District, University of Tampere School of Medicine and Fimlab Laboratories Ltd, Tampere, Finland ; Kennedy Institute of Rheumatology, University of Oxford, London, UK ; Medical School, Tampere University, Tampere, FIN-33014 Finland
| | - Leena E Viiri
- Kennedy Institute of Rheumatology, University of Oxford, London, UK
| | - Emma Raitoharju
- Pirkanmaa Hospital District, University of Tampere School of Medicine and Fimlab Laboratories Ltd, Tampere, Finland
| | - Nagora Astola
- Kennedy Institute of Rheumatology, University of Oxford, London, UK
| | - Ilkka Seppälä
- Pirkanmaa Hospital District, University of Tampere School of Medicine and Fimlab Laboratories Ltd, Tampere, Finland
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum, German Research Center for Environmental Health, Munich, Germany ; Institute of Epidemiology II, Helmholtz Zentrum, German Research Center for Environmental Health, Munich, Germany
| | | | - Alun H Davies
- Kennedy Institute of Rheumatology, University of Oxford, London, UK
| | - Terho Lehtimäki
- Pirkanmaa Hospital District, University of Tampere School of Medicine and Fimlab Laboratories Ltd, Tampere, Finland
| | - Pekka J Karhunen
- Pirkanmaa Hospital District, University of Tampere School of Medicine and Fimlab Laboratories Ltd, Tampere, Finland
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, University of Oxford, London, UK
| |
Collapse
|