1
|
Jiang S, Ma F, Lou J, Li J, Shang X, Li Y, Wu J, Xu S. Naringenin reduces oxidative stress and necroptosis, apoptosis, and pyroptosis in random-pattern skin flaps by enhancing autophagy. Eur J Pharmacol 2024; 970:176455. [PMID: 38423240 DOI: 10.1016/j.ejphar.2024.176455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Random skin flap grafting is one of the most commonly used techniques in plastic and orthopedic surgery. However, necrosis resulting from ischemia and ischemia-reperfusion injury in the distal part of the flap can severely limit the clinical application of the flap. Studies have revealed that naringenin reduces pyroptosis, apoptosis, and necroptosis, inhibits oxidative stress, and promotes autophagy. In this study, the effects of Naringenin on flap viability and its underlying mechanism were evaluated. METHODS Mice with random skin flaps were randomly allocated to control, Naringenin, and Naringenin + 3-methyladenine groups. On postoperative day 7, flap tissues were collected to estimate angiogenesis, necroptosis, apoptosis, pyroptosis, oxidative stress, and autophagy via hematoxylin and eosin staining, immunofluorescence, and immunohistochemistry. RESULTS The results revealed that naringenin promoted the viability of the random flaps as well as angiogenesis, while inhibiting oxidative stress and decreasing pyroptosis, apoptosis, and necroptosis. These effects were reversed by the autophagy inhibitor 3-methyladenine. CONCLUSIONS The findings indicated that naringenin treatment could promote flap survival by inhibiting pyroptosis, apoptosis, necroptosis, and alleviating oxidative stress, caused by the activation of autophagy.
Collapse
Affiliation(s)
- Shuai Jiang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Feixia Ma
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54 Youdian Road, Hangzhou, 310060, China
| | - Junsheng Lou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Jiafeng Li
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Xiushuai Shang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Yifan Li
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Junsong Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China.
| | - Sanzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
2
|
Chen T, Chen H, Fu Y, Liu X, Huang H, Li Z, Li S. The eNOS-induced leonurine's new role in improving the survival of random skin flap. Int Immunopharmacol 2023; 124:111037. [PMID: 37827057 DOI: 10.1016/j.intimp.2023.111037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
In reconstructive and plastic surgery, random skin flaps are commonly utilized to treat skin abnormalities produced by a variety of factors. Flap delay procedure is commonly used to reduce flap necrosis. Due to the limitations of various conditions, the traditional surgical improvement can't effectively alleviate the skin flap necrosis. And leonurine (Leo) has antioxidant and anti-inflammatory effects. In this study, we researched the mechanism underlying the influences of varied Leo concentrations on the survival rate of random skin flaps. Our results showed that after Leo treatment, tissue edema and necrosis of the flap were significantly reduced, while angiogenesis and flap perfusion were significantly increased. Through immunohistochemistry and Western blot, we proved that Leo treatment can upregulate the level of angiogenesis, while Leo treatment significantly reduced the expression levels of oxidative stress, apoptosis and inflammation. As a result, it can significantly improve the overall viability of the random skin flaps through the increase of angiogenesis, restriction of inflammation, attenuation of oxidative stress, and reduction of apoptosis. And this protective function was inhibited by LY294002 (a broad-spectrum inhibitor of PI3K) and L-NAME (NG- nitro-L-arginine methyl ester, a non-selective NOS inhibitor). All in all, Leo is an effective drug that can activate the eNOS via the PI3K/Akt pathway. By encouraging angiogenesis, preventing inflammation, minimizing oxidative stress, and lowering apoptosis, Leo can raise the survival rate of random skin flaps. The recommended concentration of Leo in this study was 30 mg/kg.
Collapse
Affiliation(s)
- Tingxiang Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Hongyu Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yuedong Fu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xuao Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Haosheng Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zhijie Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China.
| | - Shi Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Lyu L, Kim H, Bae JS, Hua C, Kim JH, Kim EH, Mo JH, Park I. The application of SFDI and LSI system to evaluate the blood perfusion in skin flap mouse model. Lasers Med Sci 2021; 37:1069-1079. [PMID: 34213684 DOI: 10.1007/s10103-021-03354-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study is to evaluate whether the blood perfusion to tissues for detecting ischemic necrosis can be quantitatively monitored by spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) in a skin flap mouse model. Skin flaps were made on Institute of Cancer Research (ICR) mice. Using SFDI and LSI, the following parameters were estimated: oxyhemoglobin (HbO2), deoxyhemoglobin (Hb), total hemoglobin (THb), tissue oxygen saturation (StO2), and speckle flow index (SFI). Histologically, epithelium thickness, collagen deposition, and blood vessel count of skin flap tissues were analyzed. Then, the correlation of SFDI and histological results was assessed by application of Spearman rank correlation method. As the result, the number of blood vessels and the percentage of collagen areas showed significant difference between the necrotic tissue group and the non-necrotic one. Especially, the necrotic tissue had a complete epithelial loss and loses its normal structure. We identified that SFDI/LSI parameters were significantly different between non-necrotic and necrotic tissue groups. Especially, all SFDI and LSI parameters measured on the 1st day after surgery showed significant difference between necrotic tissue and non-necrotic tissue. In addition, the number of blood vessel and percentage of collagen area were positively correlated with HbO2 and StO2 among SFDI/LSI parameters. Meanwhile, the number of blood vessel and percentage of collagen area showed the negative correlation with Hb. By applying SFDI and LSI simultaneously to the skin flap, we could quantitatively monitor the blood perfusion and the tissue condition which can help us to detect ischemic necrosis objectively in early stage.
Collapse
Affiliation(s)
- Lele Lyu
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea.,Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea
| | - Hyeongbeom Kim
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea.,Department of Biomedical Engineering, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea
| | - Jun-Sang Bae
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea.,Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea
| | - Cheng Hua
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea.,Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea
| | - Jie Hye Kim
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea.,Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea
| | - Eun-Hee Kim
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea.,Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea
| | - Ji-Hun Mo
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea. .,Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea. .,Laser Translational Clinical Trial Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea.
| | - Ilyong Park
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea. .,Department of Biomedical Engineering, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
4
|
Wu L, Gao S, Zhao T, Tian K, Zheng T, Zhang X, Xiao L, Ding Z, Lu Q, Kaplan DL. Pressure-driven spreadable deferoxamine-laden hydrogels for vascularized skin flaps. Biomater Sci 2021; 9:3162-3170. [PMID: 33881061 PMCID: PMC8096535 DOI: 10.1039/d1bm00053e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of hydrogels that support vascularization to improve the survival of skin flaps, yet establishing homogeneous angiogenic niches without compromising the ease of use in surgical settings remains a challenge. Here, pressure-driven spreadable hydrogels were developed utilizing beta-sheet rich silk nanofiber materials. These silk nanofiber-based hydrogels exhibited excellent spreading under mild pressure to form a thin coating to cover all the regions of the skin flaps. Deferoxamine (DFO) was loaded onto the silk nanofibers to support vascularization and these DFO-laden hydrogels were implanted under skin flaps in rats to fill the interface between the wound bed and the flap using the applied pressure. The thickness of the spread hydrogels was below 200 μm, minimizing the physical barrier effects from the hydrogels. The distribution of the hydrogels provided homogeneous angiogenic stimulation, accelerating rapid blood vessel network formation and significantly improving the survival of the skin flaps. The hydrogels also modulated the immune reactions, further facilitating the regeneration of the skin flaps. Considering the homogeneous distribution at the wound sites, improved vascularization, reduced barrier effects and low inflammation, these hydrogels appear to be promising candidates for use in tissue repair where a high blood supply is in demand. The pressure-driven spreading properties should simplify the use of the hydrogels in surgical settings to facilitate clinical translation.
Collapse
Affiliation(s)
- Lijun Wu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China. and Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Suyue Gao
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China and Department of Dermatology and Cosmetic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu, China
| | - Tianlan Zhao
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Kai Tian
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Tingyu Zheng
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.
| | - Liying Xiao
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
5
|
Luo Z, Bian Y, Zheng G, Wang H, Yan B, Su W, Dong W, Hu Z, Ding J, Wang A, Li S, Fu W, Xue J. Chemically Modified SDF-1α mRNA Promotes Random Flap Survival by Activating the SDF-1α/CXCR4 Axis in Rats. Front Cell Dev Biol 2021; 9:623959. [PMID: 33614652 PMCID: PMC7890013 DOI: 10.3389/fcell.2021.623959] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/14/2021] [Indexed: 12/25/2022] Open
Abstract
Random skin flaps are frequently applied in plastic and reconstructive surgery for patients suffering from soft tissue defects caused by congenital deformities, trauma and tumor resection. However, ischemia and necrosis in distal parts of random skin flaps remains a common challenge that limits the clinical application of this procedure. Recently, chemically modified mRNA (modRNA) was found to have great therapeutic potential. Here, we explored the potential of fibroblasts engineered to express modified mRNAs encoding the stromal cell-derived factor-1α (SDF-1α) to improve vascularization and survival of therapeutic random skin flaps. Our study showed that fibroblasts pre-treated with SDF-1α modRNA have the potential to salvage ischemic skin flaps. Through a detailed analysis, we revealed that a fibroblast SDF-1α modRNA combinatorial treatment dramatically reduced tissue necrosis and significantly promoted neovascularization in random skin flaps compared to that in the control and vehicle groups. Moreover, SDF-1α modRNA transcription in fibroblasts promoted activation of the SDF-1α/CXCR4 pathway, with concomitant inactivation of the MEK/ERK, PI3K/AKT, and JAK2/STAT3 signaling pathways, indicating a possible correlation with cell proliferation and migration. Therefore, fibroblast-mediated SDF-1α modRNA expression represents a promising strategy for random skin flap regeneration.
Collapse
Affiliation(s)
- Zucheng Luo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yujie Bian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Gang Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Huijing Wang
- Shanghai Children's Medical Center, School of Medicine, Institute of Pediatric Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bingqian Yan
- Shanghai Children's Medical Center, School of Medicine, Institute of Pediatric Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenting Su
- Department of Dermatology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Wei Dong
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhichao Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Anyuan Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Shi Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China
| | - Wei Fu
- Shanghai Children's Medical Center, School of Medicine, Institute of Pediatric Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering, School of Medicine, Shanghai 9th People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jixin Xue
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Wu L, Gao S, Tian K, Zhao T, Li K. "Pingpong racket" flap model for evaluating flap survival. J Cosmet Dermatol 2020; 20:2593-2597. [PMID: 33336511 DOI: 10.1111/jocd.13886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Random skin flap is widely used to repair tissue defects; however, it is often accompanied by ischemia and necrosis of the distal flap due to inferior axial vascularity. Even though different drugs, biomaterials, and stem cell therapies have been developed to improve the survival of random flap, evaluating the promotion of flap survival remains a big challenge. Based on successful clinical practice, we designed a "Pingpong racket" shape flap in the rat. Without the predetected blood vessels procedure, the "pingpong racket" flap provides a preferable option to evaluate the function of drugs and biomaterials in promoting flap survival. MATERIALS AND METHODS "Pingpong racket" dorsal flaps with different pedicle lengths were developed in the rats. The survival area was evaluated by digital photography and computer-assisted analysis. The quantitative survival area was considered a useful indicator for analyzing drugs' applicability in improving skin flap survival. RESULTS A new model with a pedicle width of 1 cm and a flap diameter of 3 cm, in which the length of the pedicle could be tuned, was established. No iliolumbar vessels passed through the pedicle. The necrosis ratio ( round ) of the flap was 29.88% in the 2 cm long pedicle, 74.69% in the 3 cm long pedicle, 95.52% in the 4 cm long pedicle, and in the 5 cm long pedicle; necrotic area could be found in both the round part and in the pedicle. CONCLUSION The new 3 cm long pedicle flap is suitable for evaluating the drugs for promoting skin flap survival. Rat dorsal "Pingpong racket" flap can be easily handled, thus avoiding blood vessels' detection. The flap could achieve comparable results to clinical and alleviate the negative influence of the flap's longitudinal contraction. Besides, it is intuitive and aesthetically pleasing.
Collapse
Affiliation(s)
- Lijun Wu
- Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Suyue Gao
- Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Tian
- Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tianlan Zhao
- Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ke Li
- Department of Plastic and Burn Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Bali U, Aydemir I, Keçeci Y, Yoleri L, Tuğlu Mİ. Effects of oxidative stress and apoptosis on vascularity and viability of perforator flaps. Biotech Histochem 2020; 96:526-535. [PMID: 33107764 DOI: 10.1080/10520295.2020.1831066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We investigated lateral thoracic and posterior thigh perforator flaps for viability, vascularization, perfusion and apoptosis in a rat model. Wistar albino rats were divided into six groups: lateral thoracic artery perforator flap (LTPF) sham, 3 × 2 cm2 LTPF, 3 × 6 cm2 LTPF, posterior thigh perforator flap (PTPF) sham, 3 × 2 cm2 PTPF, and 3 × 6 cm2 PTPF. Flap viability was determined on postoperative days 1 and 7. On day 7, flaps were photographed and their viability was measured using two-dimensional planimeter paper. Tissue samples were harvested for examination by histology and immunohistochemistry. Viability differences were statistically significant. Epithelial thickness, vascularity and number of fibroblasts were reduced in the 3 × 6 cm2 groups. Neovascularization and apoptosis based on molecular tests were not significantly different among groups. Flap size and location are important factors for closure of surgical or traumatic defects. We suggest that for clinical application, wound complications will occur less frequently with perforators that nourish large areas of flaps.
Collapse
Affiliation(s)
- Ulaş Bali
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Manisa Celal Bayar University, Manisa, Turkey
| | - Işıl Aydemir
- Faculty of Medicine, Department of Histology and Embryology, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Yavuz Keçeci
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Manisa Celal Bayar University, Manisa, Turkey
| | - Levent Yoleri
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Manisa Celal Bayar University, Manisa, Turkey
| | - Mehmet İbrahim Tuğlu
- Faculty of Medicine, Department of Histology and Embryology, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
8
|
Pak CS, Moon SY, Lee YE, Kang HJ. Therapeutic Effects against Tissue Necrosis of Remote Ischemic Preconditioning Combined with Human Adipose-Derived Stem Cells in Random-Pattern Skin Flap Rat Models. J INVEST SURG 2020; 34:1304-1311. [PMID: 32691637 DOI: 10.1080/08941939.2020.1795750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Remote ischemic preconditioning (rIPC) is a preventive strategy against ischemia-reperfusion injury. To reduce ischemia-reperfusion injury of random-pattern skin flaps, we investigated the therapeutic effects of rIPC combined with human adipose-derived stem cells (hADSCs) in a rat model. MATERIAL AND METHODS In total, 24 female Sprague Dawley rats were divided into four groups (n = 6 each): control (skin flap only), rIPC, hADSCs, and rIPC + hADSCs. rIPC was performed in the hind limb of the rats over three cycles of 5 min of occlusion and 5 min of reperfusion, using a tourniquet. A rectangular (3 × 9 cm) dorsal skin flap was used. hADSCs (5 × 105 cells/100 µL) labeled with fluorescent dye were transplanted into the normal subcutaneous tissue at the skin flap boundary. After 14 days, the therapeutic effects of rIPC and hADSCs were evaluated via analysis of the necrotic flap area, histopathologic assessment, and immunohistochemistry (von Willebrand Factor (vWF) and CD31). RESULTS The necrotic area of the skin flap significantly decreased in the rIPC + hADSCs group (32.75 ± 1.43%) compared with the control (40.60 ± 3.27%, P < 0.01) and rIPC groups (38.84 ± 0.77%, P < 0.05). Dye-labeled hADSCs migrated to the skin flap from the injection site. In the rIPC + hADSCs group, the epithelial tissue and skin appendage had regenerated, and the smooth muscle and subcutaneous fat layers were preserved. Many more vWF- and CD31-positive vessels were observed in the rIPC + hADSCs group compared with the other groups. CONCLUSIONS The rIPC + hADSCs treatment appeared to reduce skin flap necrosis and activated neovascularization in rats. Therefore, it may be a good strategy for clinical treatment of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Chang Sik Pak
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi-do, Korea.,Department of Plastic and Reconstructive Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Young Moon
- Biomedical Research Center, Korea University Ansan Hospital, Ansan, Gyeonggi-do, Korea
| | - Young Eun Lee
- Department of Plastic and Reconstructive Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyo Jin Kang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi-do, Korea.,Biomedical Research Center, Korea University Ansan Hospital, Ansan, Gyeonggi-do, Korea
| |
Collapse
|
9
|
Chen Z, Zhang C, Ma H, Huang Z, Li J, Lou J, Li B, Tu Q, Gao W. Detrimental Effect of Sitagliptin Induced Autophagy on Multiterritory Perforator Flap Survival. Front Pharmacol 2020; 11:951. [PMID: 32670067 PMCID: PMC7332881 DOI: 10.3389/fphar.2020.00951] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/11/2020] [Indexed: 01/09/2023] Open
Abstract
Multiterritory perforator flap survival is commonly applied in surgical tissue reconstructions and covering of large skin defects. However, multiple risk factors such as ischemia, reperfusion injury, and apoptosis after reconstructive surgeries cause necrosis in distal parts with outcomes ranging from poor aesthetic appearance to reconstructive failure. A few studies have reported that sitagliptin (Sit) promotes angiogenesis and inhibits apoptosis. However, little is known about Sit-induced autophagy especially on the flap model. Therefore, our study investigated the effect of Sit and its induced autophagy on the perforator flap survival. Ninety male Sprague-Dawley rats were randomly separated into control, Sit, and Sit+3-methyladenine group. Results revealed that Sit significantly promoted flap survival by enhancing angiogenesis, reducing oxidative stress, and attenuating apoptosis. In addition, flap survival was further improved after co-administration with 3-methyladenine to inhibit autophagy. Overall, our results established that Sit has positive effects in promoting survival of multiterritory perforator flap. Sit-induced autophagy was detrimental for flap survival and its inhibition may further improve flap survival.
Collapse
Affiliation(s)
- Zhengtai Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
- Department of Second Clinical Medical, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Chenxi Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
- Department of Second Clinical Medical, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Haiwei Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
- Department of Second Clinical Medical, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Zihuai Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
- Department of Second Clinical Medical, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jiafeng Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
- Department of Second Clinical Medical, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Junshen Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
- Department of Second Clinical Medical, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Baolong Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
- Department of Second Clinical Medical, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Qi Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of First Clinical Medical, The First Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China
| |
Collapse
|
10
|
Guo Y, Li D, Li J, Yang N, Wang D. Expression and Significance of MicroRNA155 in Serum of Patients with Cerebral Small Vessel Disease. J Korean Neurosurg Soc 2020; 63:463-469. [PMID: 32156102 PMCID: PMC7365280 DOI: 10.3340/jkns.2019.0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/30/2019] [Indexed: 11/27/2022] Open
Abstract
Objective This study aimed to investigate the changes and significance of microRNA155 levels in serum of patients with cerebral small vessel disease (CSVD).
Methods Thirty patients with CSVD who met the inclusion criteria were selected and divided into eight patients with lacunar infarction (LI) group and 22 patients with multiple lacunar infarction (MLI) combined with white matter lesions (WML) group according to the results of head magnetic resonance imaging (MRI). Thirty samples from healthy volunteers without abnormalities after head MRI examination were selected as the control group. The levels of serum microRNA155 in each group were determined by real-time polymerase chain reaction, and the correlation between microRNA155 in the serum of patients with CSVD and the increase of imaging lesions was analyzed by Spearman correlation analysis.
Results Compared with the control group, the serum microRNA155 level in the LI group, MLI combined with WML group increased, the difference was statistically significant (p<0.05); serum microRNA155 level was positively correlated with the increase of imaging lesions (p<0.05).
Conclusion The change of serum microRNA155 level in patients with CSVD may be one of its self-protection mechanisms, and the intensity of this self-protection mechanism is positively correlated with the number of CSVD lesions.
Collapse
Affiliation(s)
- Ying Guo
- Department of Neurology, Pu'er People's Hospital, Pu'er, China
| | - Dongxue Li
- Department of Neurology, Pu'er People's Hospital, Pu'er, China
| | - Jiapei Li
- Department of Internal Medicine, Pu'er City Prison Hospital, Pu'er, China
| | - Nan Yang
- Department of Neurology, Pu'er People's Hospital, Pu'er, China
| | - Deyun Wang
- Department of Neurology, Pu'er People's Hospital, Pu'er, China
| |
Collapse
|
11
|
Zhou K, Chen H, Lin J, Xu H, Wu H, Bao G, Li J, Deng X, Shui X, Gao W, Ding J, Xiao J, Xu H. FGF21 augments autophagy in random-pattern skin flaps via AMPK signaling pathways and improves tissue survival. Cell Death Dis 2019; 10:872. [PMID: 31740658 PMCID: PMC6861244 DOI: 10.1038/s41419-019-2105-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
Random-pattern skin flap is commonly used for surgical tissue reconstruction due to its ease and lack of axial vascular limitation. However, ischemic necrosis is a common complication, especially in distal parts of skin flaps. Previous studies have shown that FGF21 can promote angiogenesis and protect against ischemic cardiovascular disease, but little is known about the effect of FGF21 on flap survival. In this study, using a rat model of random skin flaps, we found that the expression of FGF21 is significantly increased after establishment skin flaps, suggesting that FGF21 may exert a pivotal effect on flap survival. We conducted experiments to elucidate the role of FGF21 in this model. Our results showed that FGF21 directly increased the survival area of skin flaps, blood flow intensity, and mean blood vessel density through enhancing angiogenesis, inhibiting apoptosis, and reducing oxidative stress. Our studies also revealed that FGF21 administration leads to an upregulation of autophagy, and the beneficial effects of FGF21 were reversed by 3-methyladenine (3MA), which is a well-known inhibitor of autophagy, suggesting that autophagy plays a central role in FGF21’s therapeutic benefit on skin flap survival. In our mechanistic investigation, we found that FGF21-induced autophagy enhancement is mediated by the dephosphorylation and nuclear translocation of TFEB; this effect was due to activation of AMPK-FoxO3a-SPK2-CARM1 and AMPK-mTOR signaling pathways. Together, our data provides novel evidence that FGF21 is a potent modulator of autophagy capable of significantly increasing random skin flap viability, and thus may serve as a promising therapy for clinical use.
Collapse
Affiliation(s)
- Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Huanwen Chen
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jinti Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Hongqiang Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Guodong Bao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Jiafeng Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Xiangyang Deng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaolong Shui
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China. .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China. .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
| |
Collapse
|
12
|
Zakirova EY, Shalimov DV, Garanina EE, Zhuravleva MN, Rutland CS, Rizvanov AA. Use of Biologically Active 3D Matrix for Extensive Skin Defect Treatment in Veterinary Practice: Case Report. Front Vet Sci 2019; 6:76. [PMID: 30931318 PMCID: PMC6428743 DOI: 10.3389/fvets.2019.00076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Objectives: Large full-thickness skin defects represent a serious veterinary problem. Methods: We have developed novel bioactive 3D-matrixes based on fibrin glue Tissucol (Baxter), containing the combination of the adenoviral constructs with genes vascular endothelial growth factor 165 (VEGF165) and fibroblast growth factor two (FGF2; construct Ad5-VEGF165 + Ad5-FGF2) or multipotent mesenchymal stem cells, genetically modified with these constructs. Results: In vitro studies confirmed the biosynthesis of VEGF165 and FGF2 mRNA in the transduced cells. Ad5-VEGF165 + Ad5-FGF2- transduced multipotent mesenchymal stem cells showed an enhanced capacity to form capillary-like tubes in vitro. Bioactive 3D-matrix application enhanced granulation tissue formation and epithelialization of non-healing, large bite wounds in a dog. Successful wound healing was observed with a positive clinical outcome for the canine patient. This research and application of regenerative gene therapy alongside a novel bioactive 3D-matrix shows promising clinical applications for the future in both dogs and other mammals including humans.
Collapse
Affiliation(s)
- Elena Yu Zakirova
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Ekaterina E Garanina
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Margarita N Zhuravleva
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Catrin S Rutland
- Faculty of Medicine, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
13
|
Wang J, Ji E, Lin C, Wang L, Dai L, Gao W. Effects of bradykinin on the survival of multiterritory perforator flaps in rats. World J Surg Oncol 2019; 17:44. [PMID: 30813916 PMCID: PMC6394035 DOI: 10.1186/s12957-019-1570-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/27/2019] [Indexed: 02/08/2023] Open
Abstract
Background Bradykinin, a vasoactive peptide, has many biological functions. For example, it accelerates angiogenesis. Thus, we studied the effects of bradykinin on the survival of perforator flaps. Methods Averagely, 50 male Sprague–Dawley rats were divided into control and bradykinin groups and underwent procedures to the multiterritory perforator flap. Areas of flap survival were tested 7 days later. Flap perfusion was evaluated by laser Doppler imaging. We assessed the extent of autophagy by determining LC3-II/I, Beclin 1, and p62. Flap angiogenesis was assessed by immunohistochemistry and H&E staining. We measured the level of vascular endothelial growth factor (VEGF) protein using western blot. We assessed oxidative stress by measuring the activity of superoxide dismutase (SOD) and malondialdehyde (MDA) levels. The apoptotic index was also evaluated by western blot, and we determined nitric oxide (NO) production using an NO assay kit. Results The bradykinin group exhibited significantly larger areas of flap survival, higher blood supply, and more neovascularization. The bradykinin group also had higher SOD activity, higher VEGF expression and NO content, and reduced MDA compared to the control group. Rats treated with bradykinin also had lower levels of apoptosis and autophagy relative to the control group. Conclusion Our results suggest that bradykinin promotes the survival of multiterritory perforator flaps by increasing angiogenesis, promoting the release of NO, suppressing apoptosis, reducing oxidative stress, and inhibiting autophagy.
Collapse
Affiliation(s)
- Jieke Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Encheng Ji
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Chen Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Long Wang
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Li Dai
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China
| | - Weiyang Gao
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, The Second Clinical Medical College of Wenzhou Medical University, Wenzhou Medical University, No. 109, Xue Yuan Road (West), Lucheng District, Wenzhou, 325000, China.
| |
Collapse
|
14
|
Hyperbaric oxygen therapy in the treatment of complications of irradiation in laryngeal cancer. Contemp Oncol (Pozn) 2018; 22:202-204. [PMID: 30455593 PMCID: PMC6238093 DOI: 10.5114/wo.2018.78945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/21/2018] [Indexed: 11/17/2022] Open
Abstract
One of the standard treatments in laryngeal cancer is radiotherapy (RT). Many short- and long-term complications can occur in the region that has received radiotherapy. Definitive treatment of the emerging complications is still debatable, and treatment is challenging for radiation oncologists and ear nose throat specialists. Recently, hyperbaric oxygen treatment (HBOT) has become a promising alternative for the treatment of these complications. The aim of this report is to discuss the effectiveness of HBOT in the treatment of late-term RT-related potential complications in a patient with laryngeal cancer. We applied HBOT for a 58-year-old male patient with laryngeal cancer for the treatment of laryngeal oedema, and dyspnoea that developed one year after RT. In a decompression chamber at 2.4 atm pressure, the patient was made to breath 100% oxygen with a mask for 90 minutes. At the beginning, HBOT was planned for 30 days; however, it was terminated upon improvement of the symptoms at the 19th session. The symptoms, which developed one year after RT, were relieved completely with HBOT, and the patient is maintaining his life without any complaint under our control. The HBOT can be an alternative treatment for late-term complications developed after radiotherapy. It can be especially used for laryngeal oedema, and dyspnoea related to the field of radiotherapy.
Collapse
|
15
|
Saito I, Hasegawa T, Ueha T, Takeda D, Iwata E, Arimoto S, Sakakibara A, Akashi M, Sakakibara S, Sakai Y, Terashi H, Komori T. Effect of local application of transcutaneous carbon dioxide on survival of random-pattern skin flaps. J Plast Reconstr Aesthet Surg 2018; 71:1644-1651. [PMID: 30031765 DOI: 10.1016/j.bjps.2018.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 05/11/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Skin flap procedures are widely used to reconstruct skin and soft tissue defects. Skin flap necrosis is a serious postoperative complication. Many researchers have introduced pharmacological agents to improve flap ischemia in experimental studies. However, outcomes of these studies remain controversial. We previously demonstrated that transcutaneous CO2 application improves hypoxia in fracture repair. In this study, we hypothesized that improving hypoxia by transcutaneous CO2 application can improve the blood flow in skin flaps and increase angiogenesis. We investigated whether transcutaneous CO2 application can increase the survival of random-pattern skin flaps. MATERIALS AND METHODS Six-week-old male Sprague-Dawley rats were divided into two equal groups: the control group (n = 6) and CO2 group (n = 6). A random-pattern skin flap was constructed in these rats. Topical CO2 was applied using a hydrogel every day for 5 days in the CO2 group. The flap survival area was measured on postoperative days 1, 3, and 5. The vessel density and expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and hypoxia-inducible factor-1α (HIF-1α) were evaluated on postoperative day 5. RESULTS A statistically significant difference was found in the percentage of the flap survival area between the two groups on postoperative days 3 and 5 (p < 0.05). Furthermore, the expression of VEGF and bFGF was significantly higher and that of HIF-1α was significantly lower in the CO2 than in the control group (p < 0.05). CONCLUSIONS Transcutaneous CO2 application can improve the blood flow in skin flaps and increase angiogenesis, thus increasing the survival of random-pattern skin flaps.
Collapse
Affiliation(s)
- Izumi Saito
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Takumi Hasegawa
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Takeshi Ueha
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, Japan; NeoChemir Inc., Kobe, Japan
| | - Daisuke Takeda
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Eiji Iwata
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Satomi Arimoto
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Akiko Sakakibara
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masaya Akashi
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Shunsuke Sakakibara
- Department of Plastic Reconstructive Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshitada Sakai
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroto Terashi
- Department of Plastic Reconstructive Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takahide Komori
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
16
|
Desmet CM, Préat V, Gallez B. Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing. Adv Drug Deliv Rev 2018; 129:262-284. [PMID: 29448035 DOI: 10.1016/j.addr.2018.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/25/2018] [Accepted: 02/03/2018] [Indexed: 12/16/2022]
Abstract
Oxygen plays a key role in wound healing, and hypoxia is a major cause of wound healing impairment; therefore, treatments to improve hemodynamics and increase wound oxygenation are of particular interest for the treatment of chronic wounds. This article describes the roles of oxygen and angiogenesis in wound healing as well as the tools used to evaluate tissue oxygenation and perfusion and then presents a review of nanomedicines and gene therapies designed to improve perfusion and oxygenation and accelerate wound healing.
Collapse
|
17
|
Detrimental effect of Hypoxia-inducible factor-1α-induced autophagy on multiterritory perforator flap survival in rats. Sci Rep 2017; 7:11791. [PMID: 28924179 PMCID: PMC5603514 DOI: 10.1038/s41598-017-12034-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/01/2017] [Indexed: 01/21/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) plays a key role in angiogenesis, improves flap survival, and activates autophagy. The effect of HIF-1α-induced autophagy is still debatable. Thus, we investigated the effect of HIF-1α-induced autophagy on multiterritory perforator flap survival. In this study, 99 male Sprague-Dawley rats received multiterritory perforator flap procedure and were divided into three groups with 33 each. The dimethyloxalylglycine (DMOG) plus 3-methyladenine (3-MA) group received intraperitoneal injection of DMOG (40 mg/kg) and 3-MA (10 mg/kg). The DMOG group and control group received comparative DMOG and saline respectively. On postoperative day (POD) 7, HIF-1α’s activities of flap survival and perfusion improvement were confirmed in DMOG group, however, its positive effects were further enhanced by co-administration of autophagy inhibitor, 3-MA. On POD 1, vascular endothelial growth factor, mean microvascular density and blood perfusion were not affected by HIF-1α up-regulation or autophagy inactivation. However, HIF-1α-induced autophagy augments apoptosis and oxidative stress. The increased level of apoptosis and oxidative stress was reversed by 3-MA and resulted in further flap survival improvement. In conclusion, HIF-1α-induced autophagy has a detrimental effect on multiterritory perforator flap survival and the flap survival was determined by the combined effects of ischemia and reperfusion injury.
Collapse
|
18
|
Lee MS, Ahmad T, Lee J, Awada HK, Wang Y, Kim K, Shin H, Yang HS. Dual delivery of growth factors with coacervate-coated poly(lactic-co-glycolic acid) nanofiber improves neovascularization in a mouse skin flap model. Biomaterials 2017; 124:65-77. [DOI: 10.1016/j.biomaterials.2017.01.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/25/2016] [Accepted: 01/27/2017] [Indexed: 10/24/2022]
|
19
|
Anti-inflammatory effects of hyperbaric oxygen on irradiated laryngeal tissues. Braz J Otorhinolaryngol 2017; 84:206-211. [PMID: 28341337 PMCID: PMC9449171 DOI: 10.1016/j.bjorl.2017.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/05/2017] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION To manage the complications of irradiation of head and neck tissue is a challenging issue for the otolaryngologist. Definitive treatment of these complications is still controversial. Recently, hyperbaric oxygen therapy is promising option for these complications. OBJECTIVE In this study, we used biochemical and histopathological methods to investigate the efficacy of hyperbaric oxygen against the inflammatory effects of radiotherapy in blood and laryngeal tissues when radiotherapy and hyperbaric oxygen are administered on the same day. METHODS Thirty-two Wistar Albino rats were divided into four groups. The control group was given no treatment, the hyperbaric oxygen group was given only hyperbaric oxygen therapy, the radiotherapy group was given only radiotherapy, and the radiotherapy plus hyperbaric oxygen group was given both treatments on the same day. RESULTS Histopathological and biochemical evaluations of specimens were performed. Serum tumor necrosis factor-α, interleukin-1β, and tissue inflammation levels were significantly higher in the radiotherapy group than in the radiotherapy plus hyperbaric oxygen group, whereas interleukin-10 was higher in the radiotherapy plus hyperbaric oxygen group. CONCLUSION When radiotherapy and hyperbaric oxygen are administered on the same day, inflammatory cytokines and tissue inflammation can be reduced in an early period of radiation injury.
Collapse
|
20
|
Yang F, Chen D, Guo ZF, Zhang YM, Liu Y, Askin S, Craig DQM, Zhao M. The application of novel nano-thermal and imaging techniques for monitoring drug microstructure and distribution within PLGA microspheres. Int J Pharm 2017; 522:34-49. [PMID: 28235626 DOI: 10.1016/j.ijpharm.2017.02.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 12/18/2022]
Abstract
Poly (d,l-lactic-co-glycolic) acid (PLGA) based microspheres have been extensively used as controlled drug release systems. However, the burst effect has been a persistent issue associated with such systems, especially for those prepared by the double emulsion technique. An effective approach to preventing the burst effect and achieving a more ideal drug release profile is to improve the drug distribution within the polymeric matrix. Therefore, it is of great importance to establish a rapid and robust tool for screening and optimizing the drug distribution during pre-formulation. Transition Temperature Microscopy (TTM), a novel nano-thermal and imaging technique, is an extension of nano-thermal analysis (nano-TA) whereby a transition temperature is detected at a localized region of a sample and then designated a color based on a particular temperature/color palette, finally resulting in a coded map based on transition temperatures detected by carrying out a series of nanoTA measurements across the surface of the sample. In this study, we investigate the feasibility of applying the aforementioned technique combined with other thermal, imaging and structural techniques for monitoring the drug microstructure and spatial distribution within bovine serum albumin (BSA) loaded and nimodipine loaded PLGA microspheres, with a view to better predicting the in vitro drug release performance.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - De Chen
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhe-Fei Guo
- Department of Pharmacy, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Yong-Ming Zhang
- Department of Pharmacy, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Yi Liu
- Department of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Sean Askin
- UCL School of Pharmacy,29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Duncan Q M Craig
- UCL School of Pharmacy,29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Min Zhao
- UCL School of Pharmacy,29-39 Brunswick Square, London, WC1N 1AX, UK; Queen's University Belfast School of Pharmacy,97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|