1
|
Liao Q, Deng J, Tong J, Gan Y, Hong W, Dong H, Cao M, Xiong C, Chen Y, Xie B, Yang FY, Alifu A, Zhou GB, Huang S, Xiong J, Hao Q, Zhou X. p53 induces circFRMD4A to suppress cancer development through glycolytic reprogramming and cuproptosis. Mol Cell 2025; 85:132-149.e7. [PMID: 39637854 DOI: 10.1016/j.molcel.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/15/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Cuproptosis is a type of copper-induced cell death that mainly impacts cells relying on mitochondrial metabolism. Although p53 regulates glycolytic metabolism, its role in cuproptosis remains unclear. Here, we report that the circular RNA, circFRMD4A, is crucial for p53-mediated metabolic reprogramming and cuproptosis. CircFRMD4A originates from the transcript of FRMD4A, which is transcriptionally activated by p53, and the formation of circFRMD4A is facilitated by the RNA-binding protein EWSR1. CircFRMD4A functions as a tumor suppressor and enhances the sensitivity of cancer cells to elesclomol-induced cuproptosis. Mechanistic analysis reveals that circFRMD4A interacts with and inactivates the pyruvate kinase PKM2, leading to a decrease in lactate production and a redirection of glycolytic flux toward the tricarboxylic acid cycle. Finally, p53 agonists and elesclomol coordinately suppress the growth of cancer in a xenograft mouse model. Altogether, our study uncovers that p53 promotes glycolytic reprogramming and cuproptosis via circFRMD4A and suggests a potential combination strategy against cancers with wild-type p53.
Collapse
Affiliation(s)
- Quan Liao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang 330006, Jiangxi, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang 330006, Jiangxi, China
| | - Jing Tong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Gan
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weiwei Hong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Hanzhi Dong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang 330006, Jiangxi, China
| | - Mingming Cao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chen Xiong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yajie Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Bangxiang Xie
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Fu-Ying Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aikede Alifu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang 330006, Jiangxi, China.
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Su KY, Li MC, Lee NW, Ho BC, Cheng CL, Chuang YC, Yu SL, Guo YL. Perinatal polychlorinated biphenyls and polychlorinated dibenzofurans exposure are associated with DNA methylation changes lasting to early adulthood: Findings from Yucheng second generation. ENVIRONMENTAL RESEARCH 2019; 170:481-486. [PMID: 30640082 DOI: 10.1016/j.envres.2019.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/29/2018] [Accepted: 01/02/2019] [Indexed: 05/17/2023]
Abstract
Epigenome-wide DNA methylation has not been studied in men perinatally exposed to PCBs and dioxins. Therefore, we examined whether perinatal exposure to polychlorinated biphenyls (PCBs) and polychlorinated dibenzofurans (PCDFs) induces sustained methylation changes lasting to early adulthood. We used the Illumina HumanMethylation450 BeadChip to assess DNA methylation in whole blood among Yucheng second generation (people perinatal exposed to high PCBs and PCDFs) compared with referents. Thirty male offspring from the Yucheng cohort were randomly selected and matched with 30 male offspring from the Yucheng' neighborhood referents with similar backgrounds. Methylation differences between the Yucheng second generation and non-exposed referents were identified using a P value < 1.06 × 10-7. Differential DNA methylation with epigenome-wide statistical significance was observed for 20 CpGs mapped to 11 genes, and 19 CpGs were correlated with gestational levels of PCBs or PCDF toxic equivalency (PCDF-TEQ) with the same direction of effect. Among the 11 genes, AHRR and CYP1A1 are involved in the aryl hydrocarbon receptor signaling pathway known to mediate dioxin toxicity. MYO1G, FRMD4A, ARL4C, OLFM1, and WWC3 were previously reported to be related to carcinogenesis. This is the first study examining genome-wide DNA methylation among people perinatally exposed to high concentrations of PCBs and PCDFs. We observed novel differential methylation of several genes, indicating that modifications of DNA methylation associated with perinatal PCB and PCDF exposure may persist in exposed offspring for more than 20 years. Furthermore, involvement of several carcinogesis-related genes suggested a potential in utero epigenetic mechanisms.
Collapse
Affiliation(s)
- Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan; NTU Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Ming-Chieh Li
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, 350, Taiwan; Department of Public Health, China Medical University College of Public Health, Taichung 404, Taiwan
| | - Nian-Wei Lee
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, 100, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Yun-Lin Branch, Yunlin, 640, Taiwan
| | - Bing-Ching Ho
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan; NTU Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Chiou-Ling Cheng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; NTU Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Yu-Chen Chuang
- Department of Environmental and Occupational Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan; NTU Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan; Department of Pathology and Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan; Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei, 100, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan.
| | - Yue Leon Guo
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, 350, Taiwan; Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, 100, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, 100, Taiwan.
| |
Collapse
|
3
|
Rajendran BK, Deng CX. Characterization of potential driver mutations involved in human breast cancer by computational approaches. Oncotarget 2018; 8:50252-50272. [PMID: 28477017 PMCID: PMC5564847 DOI: 10.18632/oncotarget.17225] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/26/2017] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the second most frequently occurring form of cancer and is also the second most lethal cancer in women worldwide. A genetic mutation is one of the key factors that alter multiple cellular regulatory pathways and drive breast cancer initiation and progression yet nature of these cancer drivers remains elusive. In this article, we have reviewed various computational perspectives and algorithms for exploring breast cancer driver mutation genes. Using both frequency based and mutational exclusivity based approaches, we identified 195 driver genes and shortlisted 63 of them as candidate drivers for breast cancer using various computational approaches. Finally, we conducted network and pathway analysis to explore their functions in breast tumorigenesis including tumor initiation, progression, and metastasis.
Collapse
Affiliation(s)
- Barani Kumar Rajendran
- Cancer Research Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- Cancer Research Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|